GISMO: Fall Arctic '07 Flight Planning Document

August 20, 2007

1.0 Introduction	2
1.1 Overview	2
1.2 General Flight Parameters	2
2.0 GISMO: Sondrestrom Flight	4
3.0 GISMO: Thule Flight 1	
4.0 GISMO: Thule Flight 2	
5. 0 GISMO: Clusters Flight	
6.0 GISMO Experiment Check List	
7.0 Calibration during installation, and before and after each mission	
8.0 Testing Results for $\Delta\Sigma$ Power Amps	
9.0 Parameter List	
10 Flight Hour Summary	
11 Camera Parameters	

1.0 Introduction

GISMO is a concept for a spaceborne radar system designed to measure the surface and basal topography of terrestrial ice sheets and to determine the physical properties of the glacier bed. Our primary objective is to develop this new technology for obtaining spaceborne estimates of the mass of the polar ice sheets with an ultimate goal of providing essential information to modelers estimating the mass balance of the polar ice sheets and estimating the response of ice sheets to changing climate. Our technology concept employs VHF and P-band interferometric radars using a novel clutter rejection technique for measuring the surface and bottom topographies of polar ice sheets. Our approach will enable us to reduce signal contamination from surface clutter, measure the topography of the glacier bed, and paint a picture of variations in bed characteristics. The technology will also have applications for planetary exploration including studies of the Martian ice caps and the icy moons of the outer solar system. We have recently shown that it is possible to image a small portion of the base of the polar ice sheets using a SAR approach. Through the concept developed here, we believe that, for the first time, we can image the base and map the 3-dimenional basal topography beneath an ice sheet at up to 5 km depth..

1.1 Overview

During fall Arctic '07, we plan to conduct airborne observations using the NASA P-3 aircraft over Greenland. The planned flight lines are shown in figure 1. We will validate the following GISMO objectives

- 1) relative backscatter strength at 150 and 450 MHz
- 2) determine maximum swath width for interferometry
- 3) demonstrate clutter rejection approaches (InSAR, tomography, multiaperture beam formation)
- 4) investigate mosaic formation over areas suspected to have a wet bed
- 5) acquire data over thick and thin ice
- 6) acquire calibration data over the ocean
- 7) acquire data over all snow zones.

1.2 General Flight Parameters

Flights at 150 MHz Flights at 450 MHz Speed 270 Knots Flight elevation 26,000 ft above sea level (one leg of Sonde flight at 1500 ft above ice sheet surface) Special targets should be located 400 left or right of the nadir track Digital Camera Photography over select areas.

Figure 1. GISMO flight lines for fall Arctic '07

2.0 GISMO: Sondrestrom Flight

Overview

Objectives: Observations at two frequencies; Observations from thin to thick ice; Observations of Clutter zones and moulins; calibration site; all glacier facies.

Parameters

Sonde Flight at 150 MHz
Sonde Flight at 450 MHz
Speed 270 Knots
Outbound elevation 26,000 ft above sea level
Inbound elevation 1500 ft above ice sheet surface
Inbound flight line offset 100 m from outbound flight line
Special targets(Swiss Camp, GRIP, GISP) should be located 400 left or right of the nadir track

Events

Start at Sonde and climb to 26000 ft leg across ablation, wet and percolation facies Traverse across Jacobshavn Clutter zone Pass over Disko Bay for Calibration Swiss Camp Race Track – 4-6 legs, 25 m spacing - not accurately represented on shape file (opportunity to dump data during turns) Northern Clutter Targets Dry Snow Zones and on to GISP/GRIP Outbound leg can end before GISP/GRIP if time is short.

Descend to 1500 ft above surface

Return leg at lower elevation (1500 ft) Eliminate race track and extensive ocean calibration Return leg deviates from Outbound leg by including flight segments down and then back up the Jacobshavn Channel and over PSU sites.

Way-point list

Long	Lat	Name
309.3	67	BGSF
309.3	67	BGSF
309.3	67	BGSF
313.9465	67.95465	KJ01
309.7974	69.40807	KJ02

309.2225	69.15037	KJ03	
308.5632	69.13953	KJ04	
306.6419	69.09326	KJ05	
309.1128	69.47167	FIORD	
310.5411	69.55282	NR1W	
311.0259	69.61438	NR1E	
311.1129	69.52979	SR1E	
310.6299	69.46824	SR1W	
310.5413	69.55261	NR2W	
311.0262	69.61417	NR2E	
311.1131	69.52958	SR2E	
310.6302	69.46803	SR2W	
310.5415	69.5524	NR3W	
311.0264	69.61396	NR3E	
311.1133	69.52937	SR3E	
310.6304	69.46781	SR3W	
310.5418	69.55219	NR4W	
311.0266	69.61375	NR4E	
311.1135	69.52916	SR4E	
310.6306	69.4676	SR4W	
311.4171	69.75886	JS01	
308.9572	71.75833	KJ07	
308.3894	72.20556	KJ50	
321.5356	72.58109	GISP4N	
322.3626	72.58161	GRIP4N	
322.3626	72.58071	GRIP4NF	
321.5358	72.58019	GISP4NF	
308.3896	72.20467	KJ50F1	
308.3921	72.20589	KJ50F2	
308.9599	71.75867	KJ07F1	
308.9599	71.75868	KJ07F2	
311.4194	69.75921	JS1F1	
313.1318	69.39667	C4B	
312.4069	69.29411	C4A	
311.7932	69.22072	JAK01	
310.5811	69.10772	JAK02	
310.3009	69.17171	JAK03	
309.6568	69.20253	JAK04	
310.3009	69.1/1/1	JAK03	
310.5811	69.10772	JAK02	
311.0258	69.15135	PSU4S	
311.7932	69.22072	JAK01	
311.8029	69.18056		
311.5004	08.84/6/		
313.9481	07.95529		
313.94/6	07.95385	NJUTEZ	
309.3011	66.9992	BG2FF	

Photography (following the way point list above) (See Camera Parameters Section) Can be done on either the 450 or 150 MHz flight depending on cloud. Only one observation is needed.

Outbound 26000 ft Elevation Sensor length set to 15 mm F = 18 mmInterval = 31 sec

Camera On for Segments Connecting: BGSF to NR1W NR1W to NR1 E NR1E to SR1 E SR1E to SR1 W SR1 W to NR2W Camera off

Camera on SR4W to KJ50 Camera off

Return flight 1500 ft elevation above surface Sensor Length set to 15 mm F = 18 mmInterval = 2.5 sec

Camera on KJ50 to KJ07 (+20 km) Camera off

Camera on C4b to C4 Camera off

Figure 1. Sonde outbound yellow dots: cities; red dots: field camps; Blue dots: places where Prasad has identified clutter

Figure 2. Sonde flight details around Jacobshavn

Figure 3. Surface and bottom topography along the flight line (wgs-84)

Range window - Sondrestrom_Jacobshavn 1500 ft over ice sheet surface

Range Window: Sondrestrom Jacobshavn 26000 ft Pressure Altitude

3.0 GISMO: Thule Flight 1

Overview

Objectives: Observations at two frequencies; Repeat May 06 flight line; Observations from thin to thick ice; Open water calibration; Image NGRIP site; Subglacial water zones; mosaic images over North East Ice Stream all snow facies

Parameters

1 Flight at 150 MHz 1 Flight at 450 MHz Speed 270 Knots Flight elevation 26,000 ft Special targets(NGRIP, NASA East) should be located 400 left or right of the nadir track Flight includes a minimum of 3 parallel lines, separated by 2 km an passing over the North East Ice Stream.

Events

Begin at Thule and climb to 26000 ft Proceed Towards GITS along the May 06 Route towards Proceed towards North East Ice Stream; execute 3 parallel lines starting between coordinates (opportunity to dump data during turns) Continue on to NASA East Turn Towards NGRIP Pass Over NGRIP

Return along outlet glaciers starting at Fly down outlet Harold Moltke glacier (pending flight clearance) Return towards Thule Open Water Cal

Options: If time is short, turn towards NGRIP before reaching NASA East. If time is available add more mosaicking lines across the North East Ice Stream

Long	Lat	Name
291.3	76.53	BGTL
291.3	76.53	BGTL
291.3	76.53	BGTL
299	77.19	CC

304.5167	77.0833	KJ
310.0163	76.85713	HWAY
323.4138	75.85639	PLMW
325.2996	75.64067	PLME
325.2688	75.62438	PLSE
323.3826	75.8401	PLSW
323.445	75.87268	PLNW
325.3303	75.65695	PLNE
330.0053	75.00333	NASE4N
317.9411	75.08861	NGNEW
317.7004	75.1036	NGRP4N
301.1447	76.23083	KJ50
296.7031	76.644	KJ51
294.2619	76.66867	KJ52
294.0215	76.64921	KJ53
293.3394	76.57861	HM01
292.8222	76.51732	HM02
292.4753	76.55894	HM03
292.3002	76.59096	HM04
291.8601	76.61913	HM05
288.1344	76.45833	OW
291.3	76.53	BGTL

Photography (following the way point list above) (can be done on either the 150 or 450 MHz flight depending on cloud) 26000 Ft Sensor length set to 15 mm F = 18 mmInterval = 31 sec

Camera on BGTL to CC Camera off

Camera on PLMW to PLME Camera off

Camera On KJ50 to BGTL Camera off

Figure 1. Thule Flight 1. Red line is the May 06 route. Yellow dots: cities; red dots: field camps and clutter. Three lines, spaced 2 km apart will be used to mosaic scenes over the North East Ice Stream (arrow)

Figure 2. Lines for image mosaic over Northeast Ice Stream.

Figure 3. Surface and bottom topography

Range window: Thule 1 26000 ft Pressure Altitude

4.0 GISMO: Thule Flight 2

Overview

Objectives: Observations at two frequencies; Observations from thin to thick ice; Open water calibration; Race Track over Mt. Gogineni; Clutter Sites; Peterman Glacier and Ice Shelf; Subglacial water zones; all snow facies

Parameters

1 Flight at 150 MHz 1 Flight at 450 MHz Speed 270 Knots Flight elevation 26,000 ft Special targets(GITS, NEEM, Mt. Gogineni, Humboldt) should be located 400 left or right of the nadir track

Events

Begin at Thule and climb to 26000 ft Proceed over GITS Proceed over NEEM Turn Northeast and then on to North Clutter Site Cross Northern Crevasse Zone Pass down Petermain Glacier

Excecute Mt. Gogineni Race Track, 25 m spacing, 4 passes minimum. One leg offset 400 m from these points

Parallel leg should be located to the East of these points. Opportunity to dump data during turns.

Pass over Humboldt Camp Return towards Thule

Open Water Cal

Options: Increase number of legs in Mt Gogineni race track if time permits. If time is short, head northeast from Neem to a point west of Nclutter to decrease total distance.

291.3	76.53	BGTL
291.3	76.53	BGTL
291.3	76.53	BGTL
299	77.19	CC
309.1023	77.49644	NEEM4S
310.984	77.52594	KJ3
330.5673	81.02071	KJ4
327.777	81.101	NCLUT
311.0761	81.18278	NCZ1
309.135	80.84722	NCZ2
303.0334	80.90015	ATMC39
298.486	81.18356	ATMC38
298.154	81.1187	ATMC15
299.27	80.7199	ATMC14
301.66	80.3038	ATMC13
307.5307	79.56843	WR1N
308.0907	79.33823	WR1S
308.5424	79.37452	ER1S
307.9804	79.60471	ER1N
307.5296	79.56833	WR2N
308.0896	79.33814	WR2S
308.5412	79.37443	ER2S
307.9793	79.60462	ER2N
307.5285	79.56824	WR3N
308.0885	79.33805	WR3S
308.5401	79.37433	ER3S
307.9782	79.60453	ER3N
307.5273	79.56815	WR4N
308.0873	79.33796	WR4S
308.539	79.37424	ER4S
307.9771	79.60444	ER4N
303.1825	78.74836	HUMB4S
295.6888	77.17829	KJ1
292.4058	76.66162	KJ2
288.2217	76.60778	OW2
291.3	76.53	BGTL

Photography (following the way point list above) (can be done on either the 150 or 450 MHz flight depending on cloud) 26000 Ft Sensor length set to 15 mm F = 18 mmInterval = 31 sec

Camera On NEEM (+- 20 km) Camera off

Camera on KJ4 to ATMC13 Camera off Camera on (once around the raceway) WR2N to WR2S to ER2S to ER2N Camera off

Camera on KJ1 to BGTL

Figure 1. Thule Flight 2. Yellow dots: cities; red dots: field camps and clutter. Mt Gogineni Race track location is also shown.

Figure 2. Race Track near Mt. Gogineni.

Figure 3. Surface and bottom topography along the flight line (wgs-84)

Figure 4. Mount Gogineni

Figure 6. Northern Clutter

Range Window: Thule 2 26000 ft Pressure Altitude

5. 0 GISMO: Clusters Flight

Overview

Objectives: Observations at two frequencies; Observations from thin to thick ice; Observations of Clutter zones and moulins; calibration site; all glacier facies. Observations along the OSU cluster sites which have ice thickness and surface topography surveys dating from 1980 to the present.

Parameters

Cluster Flight at 150 MHz
Cluster Flight at 450 MHz
Speed 270 Knots
Outbound and inbound elevation 26,000 ft
Special targets(Swiss Camp, GRIP, GISP) should be located 500m left or right of the nadir track

Events

Start at Sonde

Leg across southern ablation and percolation facies. Conduct three passes over surveyed cluster points Proceed northward from DYE-3 and intersect clutter zones on East Greenland outlet glacier

shear margins. Fly over ocean west of Sonde on return for calibration

309.3	67	BGSF
309.3	67	BGSF
309.3	67	BGSF
311.5702	65.55537	G4025N
312.6719	65.54534	G4035N
314.1709	65.2968	G4045N
314.7322	65.23693	G4055N
315.3501	65.02588	G4065N
316.2012	65.21573	G4075N
317.1554	65.35922	G4085N
317.1843	65.28954	G4095N
315.2205	64.92652	G4105N
314.7021	65.07237	G4115N
313.7034	65.17744	G4125N
312.8668	65.39195	G4135N
311.5743	65.39923	G4145N
311.5802	65.25869	G4155N
312.7512	65.23727	G4165N
313.9885	64.98446	G4175N
314.6354	64.91366	G4185N
315.3349	64.8612	G4195N

316.9068	65.18765	G4205N
317.2698	65.17351	G4215N
318.401	65.05405	G422
319.5767	65.48558	G423
321.1519	66.21803	G424
321.7187	66.77589	G425
309.3	67	BGSF
303.28	66.63	Ocean
309.3	67	BGSF

Photography (following the way point list above) (See Camera Parameters Section) Can be done on either the 450 or 150 MHz flight depending on cloud. Only one observation is needed.

Outbound 26000 ft Elevation Sensor length set to 15 mm F = 18 mmInterval = 31 sec

Camera On G422 to G425

Figure 1. Cluster flight including calibration leg over ocean.

Figure 2. Zoom of cluster sites

Figure 3. Surface and bottom topography along Clusters route

Range Window: Clusters 26000 ft Pressure Altitude

6.0 GISMO Experiment Check List

Complete preflight briefing with pilots Antennas properly configured Pre flight Calibration completed (see calibration procedures sheet) Radar Parameters Checked (see Parameters list) GPS System Working and Recording Data Inflight data validation via A-scope inspection and InSAR processing Open Water Calibration data acquired Post-flight calibration Data downloaded and backed up. Post flight data analysis via InSAR processing Copy all data logs Identify successful photo runs and identify regions for repeat try

7.0 Calibration during installation, and before and after each mission

During Installation:

We need to perform four types of calibrations:

- 1) Inject transmitter signal into each receiver through a known length of delay line and attenuation, and measure each receiver response.
- 2) Measure chirp waveform and record it.
- 3) Measure time delay from the rack to each antenna using a network analyzer.
- 4) Measure system response by flying over the ocean.

During a mission:

 Record transmitter chirp waveform at the start and end of each mission, and during the mission on a disc with an oscilloscope.
This would probably require a directional coupler with 60-dB coupling coefficient with the coupled-port connected to an oscilloscope. The trigger to generate the chirp must be

the coupled-port connected to an oscilloscope. The trigger to generate the chirp must be used to trigger the oscilloscope and data are recorded by the operator on disc. This task can be handled by the new RF engineer.

2) Fly over the ocean to collect data over a distance of 10-20 km before and after each mission.

8.0 Testing Results for $\Delta\Sigma$ Power Amps

The two power amplifiers for the 450 MHz band of the GISMO radar were tested by applying a pulsed RF signal at the input of each module, and recording the corresponding output on a spectrum analyzer. The pulsed (TTL) gating signal was set to 2 kHz with a duty cycle of 20% (pulse width 100us). These are testing parameters suggested by the manufacturer. The RF input tone was supplied by an HP8648D generator operating at a frequency of 450 MHz. The output power was monitored with the spectrum analyzer triggered by the same 2 kHz TTL gating signal.

A plot of the output power (Pout) as a function of input power (Pin) for the amplifiers appears in Fig. 1. The effect of the attenuator chain placed at the output of the amps, as well as cable losses were calibrated out of the measurement. Both units (designated PA1 and PA2, respectively) are linear up to about 8 dBm of input power, after which saturation effects are noticeable. Dr. Allen pointed that this is acceptable as long as the units are able to produce Pout=2kW. The measured values of Pout for an input power of +17dBm are 63.7 dBm and 63.3 dBm for PA1 and PA2, respectively. These figures agree with the settings reported by $\Delta\Sigma$ (slightly larger than 63 dBm for both units).

Both units were left ON for about 1 hr, with Pin= 17 dBm. No significant power change was visible at the output.

Fig. 1. Recorded output power as a function of input power for the 450 MHz $\Delta\Sigma$ power amps.

9.0 Parameter List

Parameters	May 2006	April 2007	April 2007	
	150 MHz	150 MHz	450 MHz	
Carrier frequency	150 MHz	150 MHz	450	
Sampling frequency	120 MHz	120 MHz		
Chirp_start_freq (IF)	20 MHz	20 MHz	30 MHz	
			Bandwidth	
Chirp_Stop_freq (IF)	40 MHz	40 MHz		
Pulse_duration	3 us	10 us		
PRF	14992.5 Hz	10000 Hz		
Range_samples	4672	4672		
Echo_delay	3.5 us / 14 us	1.5 us		
Number of waveforms	4	1		
Number of transmit	2	1		
channels				
Number of receive channels	6	5		
Trasmit Power (high		1 kW (2 kW max)	1 kw (2 kW max)	
elevation)				
Transmit Power (low		200 W	200 W	
elevation				
Presums (robust)		32	32	
Presums (some errors)		26	26	

10 Flight Hour Summary

Flight line	total time (hours)	data collection time (hours)	
Thule 2	6.6		5.4
Thule 1	5.1		4.8
Sonde	7.4		6.6
Clusters 2 flights	5.1		3.9
per line	48.4		41.4

11 Camera Parameters

	Sensor length = 22.5 mm		Sensor Length = 15 mm			
	Distance	Spacing	Interval	Distance	Spacing	Interval
	(km)	(km)	(sec)	(km)	(km)	(sec)
H=26000						
F=18 mm	7.25	6.53	47	4.83	4.35	31
F=55 mm	2.37	2.14	15	1.58	1.42	10
H=1500						
F=18 mm	0.57	0.57	3.7	0.38	0.35	2.5
F=55 mm	0.19	0.17	1.2	0.13	0.11	0.8

