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ABSTRACT

Declassified Intelligence Satellite Photograph (DISP) data are important resources
for measuring the geometry of the coastline of Antarctica. By using the state-of-art
digital imaging technology, bundle block triangulation based on tie points and control
points derived from a RADARSAT-1 Synthetic Aperture Radar (SAR) image mosaic and
Ohio State University (OSU) Antarctic digital elevation model (DEM), the individual
DISP images were accuratel y assembled into a map quality mosaic of Antarcticaasit
appeared in 1963. The new map is one of important benchmarks for gauging the
response of the Antarctic coastline to changing climate.

Automated coastline extraction algorithm design is the second theme of this
dissertation. At the pre-processing stage, an adaptive neighborhood filtering was used to
remove the film-grain noise while preserving edge features. At the segmentation stage,
an adaptive Bayesian approach to image segmentation was used to split the DISP
imagery into its homogenous regions, in which the fuzzy c-means clustering (FCM)
technique and Gibbs random field (GRF) model were introduced to estimate the
conditional and prior probability density functions. A Gaussian mixture model was used
to estimate the reliable initial values for the FCM technique. At the post-processing

stage, image object formation and labeling, removal of noisy image objects, and



vectorization algorithms were sequentially applied to segmented images for extracting a
vector representation of coastlines. Results were presented that demonstrate the
effectiveness of the algorithm in segmenting the DISP data. In the cases of cloud cover
and little contrast scenes, manual editing was carried out based on intermediate image
processing and visual inspection in comparison of old paper maps.

Through a geographic information system (GIS), the derived DISP coastline data
were integrated with earlier and later data to assess continental scale changesin the
Antarctic coast. Computing the area of major Antarctic ice shelves between 1963 and
1997, we found that the net loss was approximately 0.8% and ice shelves retreated mostly
between DISP and Scientific Committee Antarctic Research (SCAR) Antarctic Digital
Database (ADD). In addition, over the 56-years (1947-present) observations on Pine

Island Glacier, we found that the retreat rate has been approximately -10 + 65 m/yr.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Remote sensing acquires information about an object without physical contact
(Rencz and Ryerson, 1998). Information about Earth’s surface can be recorded on aeria
or space photography, or satellite digital imagery. Aerial and space photography records
an image on photographic emulsions that are sensitive to energy in or near the visible
portion of the electromagnetic spectrum. Satellite digital imagery records an image over
abroad range of the electromagnetic spectrum.

The role played by this remote sensing technology in the systematic monitoring of
polar ice sheet characteristics, which is essential in the early detection of global warming
trends, is very important. More than 70% of Earth’s fresh water isbound up in the
Antarctic ice sheet; if it al melted, global sealevel would rise some 73 meters (Williams,
Jr.etal., 1995).

Antarctica has remained one of the most poorly mapped parts of our planet
because it is the coldest, windiest and on average, highest of all continents. Since the
early 1970s remotely sensed data have provided an opportunity for scientists to overcome

some environmental obstacles of Antarcticaand conduct large scale analysis of the
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Antarctic coastal regions. An extensive archive of early 1970s LANDSAT 1, 2 and 3
Multi-Spectral Scanner (M SS) images was the first impetus to map the Antarctic from
space (Swithinbank, 1973; Swithinbank and Lucchita, 1986). The maps were later
modified to include analysis of coastal change using the late 1980s and early 1990s
LANDSAT 4 and 5 MSS and Thematic Mapper (TM) images and 1992 and 1995
European Space Agency’s Earth Remote-Sensing Satellite radar images (Williams, Jr.,
1995). In 1997, RADARSAT-1 Synthetic Aperture Radar (SAR) data were successfully
acquired over the entirety of Antarctica by the Canadian Space Agency’s RADARSAT
mission, which National Aeronautics and Space Administration (NASA) launched in
November 1995. The coverage is complete and has been used to create the first, high-
resolution (25-m), radar image mosaic of Antarctica (Jezek, 1999).

Antarctic scientists were restricted to airborne data as a source for high-resolution
broad-scale coverage for the era preceding LANDSAT. Now more extensive coverage at
high-resolution has become available through declassification of early satellite
reconnai ssance photographs (McDonald, 1995; Wheelon, 1997; and Peebles, 1997)
known as Declassified Intelligence Satellite Photographs (D1SP), which were taken by a
series of reconnaissance satellites called Corona, Lanyard, and Argon, launched in the
early 1960s in polar orbits to monitor Soviet military activities. While the northern
hemisphere was their primary target, the opportunity was also taken to obtain images of
Antarctica.

This study includes orthorectification and mosaicking of the Argon DISP data
along the entire coast of Antarctica, extraction of the Antarctic coastline, and comparison
of the extracted coastline and more recent coastline data. The results were used for

2



investigating whether the entirety of the Antarctic coastline is behaving in a manner

consistent with global warming.

1.2 Thesis Overview

Chapter 2 explains data sets used in this study. 1963 Argon DISP photographs,
1997 RADARSAT-1 SAR image mosaic (Jezek, 1999), and Ohio State University
Antarctic digital elevation model (DEM) (Liu et al., 1999) were used to create a
seamless, complete image mosaic of Antarctic coastal regionsin order to identify and
analyze changes in the Antarctic coastlines in comparison of the Scott Committee on
Antarctic Research (SCAR) Antarctic Digital Database (ADD) coastline (1968 - 1991)
(ADD Consortium, 2000) and 1997 RADARSAT-1 SAR coastline data (Liu and Jezek,
2003) over the past three decades.

Chapter 3 presents the second large body of study concerning orthorectification
and mosaicking of Argon DISP data. Bundle block triangulation and orthorectification
using a DEM were applied to Argon DISP data, and the orthorectified images were
mosaicked to create a map-quality image mosaic of the Antarctic coastal regions.

Chapter 4 describes an adaptive Bayesian approach to image segmentation. Two
important elements make up a Bayesian segmentation formula, namely, the prior and
conditional probability density functions. By combining these functions, a segmentation
can be expressed in terms of maximum a posterior (MAP) criteria. This approach isa
two-step segmentation algorithm. First, the fuzzy c-means clustering (FCM) technique

(Bezdek et al., 1984) is used to model the conditional energy function Pr(y|Xx) of the



observed image vectors y given the labels x based oninitial values derived from the

Gaussian mixture model (GMM). Second, the Gibbs random field (GRF) model is used
to estimate the prior energy function Pr(x) of labels x. Using both the derived prior and
conditional energy functions, the MAP estimates are established using a maximization
algorithm known as maximizer of posterior marginals (MPM) (Marroquin et a., 1987).

Chapter 5 demonstrates the automated coastline extraction algorithm developed in
Chapter 4. The software was applied to extract the entire coastline of Antarcticafrom the
image mosaic produced in Chapter 3. For expediting of the processing, the image mosaic
was first partitioned by a number of small image blocks (i.e., 1024x 1024) along the
entire coastline. Each of image blocks was then processed as described in Chapter 4.
Five different types of image scenes, such as glacier and open water, light cloud cover,
glacier and fast ice, mountainous coastline and mixture area, are demonstrated in this
chapter. In this manner, the entire ice margin was extracted, assembled and compared
with other time series data available from the literature.

In Chapter 6, through a geographic information system (GIS), the derived 1963
data were integrated with earlier and later data to assess continental scale changesinice
margin advance or retreat. Time series data presented in this chapter quantify changesin
the Antarctic coastline using DISP, SCAR ADD, and SAR data. Additiona Earth
Observation System (EOS) data are also used in local studies of particular glaciers.

Chapter 7 concludes the thesis.



CHAPTER 2

DATA DESCRIPTIONS

1963 DISP, 1997 RADARSAT-1 SAR image mosaic, and OSU Antarctic digital
elevation model (DEM) were used to produce a continuous, orthorectified DISP image
mosaic of Antarctic coastal areasin order to identify and quantify changesin the
Antarctic coastline in comparison of the SCAR ADD and RADARSAT-1 SAR coastline

data over the past three decades.

2.1 Declassified Intelligence Satellite Photography (DI SP)

2.1.1 Introduction

A few short years after the launch of the Russian Sputnik in October 1957, high-
resol ution spaceborne camera systems gathered photo reconnaissance imagery of the
Earth surface between August 1960 and May1972 (Peebles, 1997). In February 1995, the
President of the United States declassified historical intelligence photographs (DISP)
from the early satellite systems known as the Corona, Argon, and Lanyard (McDonald,
1995). The addition of this early satellite reconnai ssance imagery provides

environmental scientists an expanded view of the world’s land surface for the 12 years



before the 1972 launch of Landsat. Because detecting environmental changeis usualy
limited by the relatively short time period of available observations and by natural
variability, it is expected that this DISP collection makes a significant contribution to

efforts to identify and quantify global environmental change.

2.1.2 DISP: Corona, Argon, and Lanyard

Corona, Argon, and Lanyard were the first three operational imaging satellite
reconnaissance systems. The Corona cameras were designated as the KH-1, KH-2, KH-
3, and KH-4 missions; the Argon camera was designated as the KH-5 mission; and the
Lanyard camera was known as the KH-6 mission (McDonald, 1995). These early
reconnaissance satellites carried a single panoramic camera (KH-1, 2, 3, and 6), asingle
frame camera (KH-5), or two panoramic cameras (KH-4, 4A, and 4B).

The KH-1 camera had a nominal ground resolution of approximately 12 meters.
By 1963 improvements to the original Corona had produced the KH-2 and KH-3, with
cameras that achieved resolutions of approximately 3 meters. Thefirst KH-4 mission
was launched in 1962 and brought a major devel opment in technology by using the
MURAL camerato provide stereoscopic imagery (Ruffner, 1995). This meant that two
cameras photographed each target from different angles, which allowed imagery analysts
to look at KH-4 stereoscopic photos in three dimensions. Three camera models with
different resolutions were the principal difference between the KH-4 versions, KH-4,

KH-4A, and KH-4B. By 1967, the camera of KH-4B had entered service with a



resolution of approximately 1.5 meters. Thisfinal version of Corona continued until
1972.

Two other systems, separate but closely allied with Corona, aso operated during
thistime. The Argon program performed mapping services for the Army in afew
missionsin the early 1960s with mediocre results.

Of three programs of Corona, Argon and Lanyard, only the Argon program
collected Antarctic data between February 1961 and August 1964 (Binschadler and
Seider, 1998). It flew 12 missions over time. The purpose of this system wasto be a
reconnaissance satellite that could obtain precise geodetic data of the Soviet Union for
pinpointing strategic targets. The camera had 76.2-mm focal length and the film had
resolution of 30 line-pair/mm. Every photograph has dimensions of approximately 11.43
x 11.43-cm and swath coverage of approximately 540 x 540 km. The estimated ground
resolution is approximately 140-m, which is useful for along-term change detection
application of the Antarctic coast in continental scales. Camerainformation for Corona,

Argon, and Lanyard is shown in Table 2.1.



KH-1 KH-2 KH-3 KH-4
Function Intelligence Intelligence Intelligence | Intelligence
Type Mono _ Mono _ Mono _ Stereo_

Panoramic Panoramic Panoramic | Panoramic

Scan (deg) 70 70 70 70
Stereo (deg) 30
Focal Length (in) 24 24 24 24
Ground Resolution (ft) 40 25 12~25 10~25
Film Resolution (Ip/mm) 50~100 50~100 50~100 50~100
Film Width (in) 21 21 2.25 2.25
Image Format (in) 21 21 225%X298 | 218%X29.8
Maximum Scale Unavailable Unavailable Unavailable | 1:12,000

KH-4A KH-4B KH-5 KH-6
Function Intelligence Intelligence Mapping | Surveillance
Type Stereo_ Stereo_ Mono Mono _

Panoramic Panoramic Frame Panoramic

Scan (deg) 70 70 Unavailable 22
Stereo (deg) 30 30
Focal Length (in) 24 24 3 66
Ground Resolution (ft) 9~25 6 460 6
Film Resolution (Ip/mm) 120 160 30 160
film Width (in) 2.25 2.25 5 5
Image Format (in) 218%298 | 218%298 45%45 | 45%25
Maximum Scale 1:7,500 | 1:7,500~1:2,000 | 1:1,000.000 |  1:3,000

Table 2.1 Camera data for Corona, Argon, and Lanyard (McDonal, 1995)

The Antarctic continent was only captured during the Argon program between

2.1.3 DISP for Antarctic Coastlines
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February 1961 and August 1964. During this period three missions, 9034A, 9058A, and
9059A, successfully photographed the Antarctic continent. Mission 9034A was the first

effort to map the Antarctic continent. The photographs were captured during the late




austral autumn (May 15 — 19, 1962), and much of the interior of the ice sheet was dark.
The photographs from this mission cover the entire Antarctic coastline except for the
Ross and Ronne/Filchner ice shelves, but most of the coastline was cloud covered during
this period. Mission 9058A was conducted during a period when the southern interior of
the ice sheet was dark (August 29 — September 1, 1963). Thus, coverage only included
the coastal perimeter of the continent. Fewer revolutions were included in this mission,
but most of the coast was photographed. Clouds were far less preval ent, increasing the
usefulness of this photographic data to the study of the ice sheet, but the austral season
was late winter and sea ice adjacent to the coast was more extensive. Mission 9059A
took place in the austral spring (October 29 — November 3, 1963), when the entire
continent was brightly lit by the Sun. Revolutions extended across the entire continent
producing a much larger data set.

The first two missions covered only the coastal areas, while the third mission
covered the entire continent. Based on visual inspection of browse images, an optimal
data set of 62 Argon photographs was identified that covered the entire Antarctic coast.
The outline of Antarctic continent with the location of each frame and its corresponding

entity identification are shown in Figure 2.1 and Table 2.2, respectively.



Figure 2.1 Outline of Antarctic coastlines with location of each frame: 9 Frames from the
mission 9058A arein blue, and 53 frames from the mission 9059A arein red.

Entity 1D | Mission Number | Revolution | Frame Number | Acquisition Date
[Mission 5098A]

DS09058A006M C115 9058A 006M 115 8/29/1963
DS09058A009M C116 9058A 009Mm 116 8/29/1963
DS09058A012MC119 9058A 012™M 119 8/29/1963
DS09058A014M C115 9058A 014Mm 115 8/29/1963
DS09058A015M C119 9058A 015M 119 8/29/1963
DS09058A016MC119 9058A 016M 119 8/29/1963
DS09058A036M C117 9058A 036M 117 8/29/1963
DS09058A041MC117 9058A 041M 117 8/29/1963
DS09058A047MC119 9058A 047M 119 8/29/1963

Continued

Table 2.2 Argon photographs providing continuous coverage of Antarctic coastline
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[Mission 9059A]
DS09059A001M C083 9059A 001M 83 10/29/1963
DS09059A003M C083 9059A 003M 83 10/29/1963
DS09059A003M C085 9059A 003M 85 10/29/1963
DS09059A003M C087 9059A 003M 87 10/29/1963
DS09059A004M C077 9059A 004M 77 10/29/1963
DS09059A006M C076 9059A 006M 76 10/29/1963
DS09059A009M C079 9059A 009M 79 10/29/1963
DS09059A010M C079 9059A 010M 79 10/29/1963
DS09059A011M C080 9059A 011M 80 10/29/1963
DS09059A011M C082 9059A 011M 82 10/29/1963
DS09059A013M C085 9059A 013M 85 10/29/1963
DS09059A014M C081 9059A 014M 81 10/29/1963
DS09059A015M C081 9059A 015M 81 10/29/1963
DS09059A023M C078 9059A 023M 78 10/29/1963
DS09059A023M C080 9059A 023M 80 10/29/1963
DS09059A029M C077 9059A 029M 77 10/29/1963
DS09059A029M C079 9059A 029M 79 10/29/1963
DS09059A030M C081 9059A 030M 81 10/29/1963
DS09059A032M C081 9059A 032M 81 10/29/1963
DS09059A032M C087 9059A 032M 87 10/29/1963
DS09059A033M C087 9059A 033M 87 10/29/1963
DS09059A034M C083 9059A 034M 83 10/29/1963
DS09059A034M C085 9059A 034M 85 10/29/1963
DS09059A035M C078 9059A 035M 78 10/29/1963
DS09059A037M C077 9059A 037M 77 10/29/1963
DS09059A038M C077 9059A 038M 77 10/29/1963
DS09059A041M C079 9059A 041M 79 10/29/1963
DS09059A042M C079 9059A 042M 79 10/29/1963
DS09059A044M C083 9059A 044M 83 10/29/1963
DS09059A044M C087 9059A 044M 87 10/29/1963
DS09059A045M C078 9059A 045M 78 10/29/1963
DS09059A045M C080 9059A 045M 80 10/29/1963
DS09059A045M C081 9059A 045M 81 10/29/1963
DS09059A045M C083 9059A 045M 83 10/29/1963
Continued

Table 2.2 Argon photographs providing continuous coverage of Antarctic coastline
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DS09059A051M CO77 9059A 051M 77 10/29/1963
DS09059A053M CO77 9059A 053M 77 10/29/1963
DS09059A055M CO77 9059A 055M 77 10/29/1963
DS09059A057M CO79 9059A 057M 79 10/29/1963
DS09059A059M C082 9059A 059M 82 10/29/1963
DS09059A060M CO76 9059A 060M 76 10/29/1963
DS09059A060M C082 9059A 060M 82 10/29/1963
DS09059A063M C081 9059A 063M 8l 10/29/1963
DS09059A065M C084 9059A 065M 84 10/29/1963
DS09059A066M C080 9059A 066M 80 10/29/1963
DS09059A066M C081 9059A 066M 8l 10/29/1963
DS09059A067M C094 9059A 067M 94 10/29/1963
DS09059A072M C079 9059A 072M 79 10/29/1963
DS09059A072M C094 9059A 072M 94 10/29/1963
DS09059A075M C083 9059A 075M 83 11/3/1963

DS09059A075M C084 9059A 075M 84 11/3/1963

DS09059A076M CO79 9059A 076M 79 10/29/1963
DS09059A076M C081 9059A 076M 8l 10/29/1963
DS09059A076M C084 9059A 076M 84 10/29/1963

Table 2.2 Argon photographs providing continuous coverage of Antarctic coastline

2.2 Ohio State University (OSU) Antarctic Digital Elevation Model (DEM)

Raw images digitized from the early reconnaissance photographs usually have
such significant geometric distortions that they cannot be used as maps, compared with
maps, or compared to each other. These distortions stem from sources such as un-
calibrated camera lens distortion, atmospheric refraction, Earth curvature, and terrain
relief. The orthorectification process corrects for terrain displacement and can be used if

adigital elevation model of the study area exists.
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The OSU Antarctic DEM was produced by integrating the best available
topographic data from a variety sources (Liu et a., 1999). Though they produced three
sets of continental scale DEMs with grid resolutions of 200, 400, and 1000 meters, the
real resolution of the DEMs varies from place to place according to the density and scale
of the original input source data. Resolutions were estimated at approximately 200
metersin the Transantarctic Mountains and Antarctic Peninsula, 400 metersin the sloped
coastal regions, and 5000 metersin others. This DEM, used for terrain correcting 1997
RADARSAT-1 Synthetic Aperture Radar (SAR) imagery, was applied to the Argon
imagery to eliminate effects of the relief displacement on the photographs taken over
varied terrain. Figure 2.2 is a hill-shaded image derived from the OSU Antarctic DEM at
acontinental scale. The absolute accuracy of the DEM is estimated at approximately 35
meters for the relatively rough and steeply sloped portions of the coastal areas (Liu et al.,

1999).
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Figure 2.2 Hill-shaded image of the OSU Antarctic DEM at the continental scale
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2.3 RADARSAT-1 Synthetic Aperture Radar (SAR) Mosaic of Antarctica

RADARSAT-1 SAR data were acquired over Antarctica between September 19
and October 14, 1997. The coverage is complete and has been used to construct a
seamless 25-meter resolution image mosaic of Antarctica (Jezek, 1999). A 100-meter
(pixel size) orthorectified mosaic displayed as a polar stereographic projection with a
standard parallel of 71° S was used for identifying common features in the DISP data.
The SAR data were orthorectified using the OSU Antarctic DEM. Orthorectification was
further constrained by a network of ground control points obtained in cooperation with
the Environmental Research Institute of Michigan and the National Imagery and
Mapping Agency. The horizontal geolocation accuracy of the SAR mosaic over ice-
covered terrain is estimated to be approximately 100 meters (Noltimier et al., 1999). The
RADARSAT-1 SAR image mosaic of Antarcticais shown in Figure 2.3.

In general, bright areas are caused by crevassing or surface melting followed by
refreezing. Dark areas are indicative of fine-grained snow and smooth ice surfaces. Most
coastal areas and much of the Antarctic Peninsula appear bright because of refrozen
seasonal melt. The seasonal seaice cover is darker than the ice shelves, making the ice

terminus relatively easy to identify.
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Figure 2.3 RADARSAT-1 SAR image mosaic of Antarctica, 1997
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2.4 Antarctic Coastlines derived from the 1997 RADARSAT-1 SAR Mosaic

Liu and Jezek (2003) extracted the Antarctic coastline from the 25-meter
resolution 1997 RADARSAT-1 SAR image mosaic. To do this, they refined a sequence
of image processing algorithms originally performed by Sohn (1996) and Haverkamp et
al. (1995). The key components were image segmentation based on aloca dynamic
threshold technigue (Chow and Kaneko, 1972) after speckle noise removal and edge
enhancement using an anisotropic diffusion algorithm, which was used for minimizing
speckle noise while not perturbing the position and magnitude of significant edge
features. The map of the Antarctic coastline extracted from the 1997 RADARSAT-1

mosaic is shown in Figure 2.4.

Figure 2.4 Antarctic coastline derived from the 1997 RADARSAT-1 SAR image mosaic
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2.5 Antarctic Digital Database

Antarctic Digital Database (ADD) published by the Scientific Committee on
Antarctic Research (SCAR) is a comprehensive digital collection of vector cartographic
datafor Antarctica. Thisdatais atopographic database compiled from avariety of
Antarctic map and satellite image sources (ADD Consortium, 2000). Recently the British
Antarctic Survey released a new version of the database. In thisversion, the coastlinein
the Australian sector - between 12° E and 168° E — has been replaced with a much more
detailed version provided by the Australian Antarctic Division, and the coastline of the
Antarctic Peninsula north of about 68° S has also been refined. However, the source
information used for updating the previous version is not available in public at this
moment (Cooper in personal communication, 2003), so the ADD 3.0 is used in this study.
Of 16 database layers, the coast layer represents the ice and rock coastline, including the
grounding line of ice shelves or glacier tongues and the front of ice shelves. Figure 2.5
shows the map of Antarctic Ice Sheet and the International Map of the World (IMW)

index number.
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Figure 2.5 Map of Antarctica showing the International Map of the World (IMW) with
index numbers (ADD Consortium, 2000)

The source information (version 3.0) about original coastline layersis shownin
Table 2.3. According to thisinformation, the temporal resolution of the SCAR ADD
coastline is between the late 1960s and the early 1990s. Also the spatial accuracies can
be estimated by considering the scale (Light, 1993). This suggests that the SCAR ADD
coastline may be systematically displaced by several metersto several kilometers. The

SCAR ADD 3.0 coastline and grounding line of Antarctica are shown in Figure 2.6.
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! British Antarctic Survey; > Australian Division of National Mapping;  United State Geological Survey; 4
Norsk Polarinstitutt topographic map; ® Institut fur Angewandte Geodasie; ® Scott Polar Research Institute

International Glaciological Society. ® Council of Ministers of USSR.

Table 2.3 Original data source information based on ADD 3.0 (ADD Consortium, 2000)
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Index |Tile Number |Year |Scale Source | Projection

1 SP19-20 1977 | 1:250,000 BAS' Lambert

2 SP 21-22 1978 | 1:250,000 BSA Lambert

3 SQ 19-20 1978 | 1:250,000 BSA Lambert

4 SQ 21-22 1978 | 1:250,000 BAS Lambert

5 SQ 37-38 1974 |1:1,000,000 |ADNM? |Lambert

6 SQ 39-40 1969 |1:1,000,000 |ADNM |Lambert

7 SQ 41-42 1971 |1:1,000,000 |ADNM |Lambert

8 SQ 43-44 1969 |1:1,000,000 |ADNM |Lambert

9 SQ 45-46 1969 |1:1,000,000 |ADNM |Lambert

10 SQ 47-48 1969 |1:1,000,000 |ADNM |Lambert

11 SQ 49-50 1971 |1:1,000,000 |ADNM |Lambert

12 SQ 51-52 1971 |1:1,000,000 |ADNM |Lambert

13 SQ 53-54 1971 |1:1,000,000 |ADNM |Lambert

14 SQ 55-56 1971 |1:1,000,000 |ADNM |Lambert

15 SR 13-14 1968 | 1:500,000 USGS® |Polar Stereo

16 SR 15-16 1988 | 1:500,000 NP* UTM

17 SR 17-18 1978 | 1:250,000 BSA Lambert

18 SR 19-20 1978 | 1:250,000 BSA Lambert

19 SR 27-28 1991 [1:1,000,000 |IFAG® Lambert

20 SR 29-30 1983 |1:6,000,000 |SPRI® Polar Stereo

21 SR 31-32 1976 |1:1,000,000 |USSR Polyconic

22 SR 33-34 1983 |1:6,000,000 |SPRI Polar Stereo

23 SR 35-36 1983 |1:6,000,000 |SPRI Polar Stereo

24 SR 37-38 1974 |1:1,000,000 |ADNM |Lambert

25 SR 41-42 1971 |1:1,000,000 |ADNM |Lambert

26 SR 43-44 1971 |1:1,000,000 |ADNM |Lambert

27 SR 55-56 1974 |1:1,000,000 |ADNM |Lambert

28 SR 57-58 1975 |1:1,000,000 |ADNM |Lambert

29 SR 59-60 1970 |1:250,000 |USGS |Lambert

30 SS 04-06 1968 |1:500,000 |USGS |Polar Stereo

31 SS07-09 1974 |1:250,000 |USGS |Lambert

32 SS10-12 1968 |1:500,000 |USGS |Polar Stereo

33 SS13-15 1968 |1:500,000 |USGS |Polar Stereo

34 SS16-18 1968 |1:500,000 USGS Polar Stereo

35 SS519-21 1978 | 1:250,000 BSA Lambert

36 SS 25-27 1990 |1:1,000,000 |IFAG Lambert

37 SS28-30 1988 |1:1,000,000 |IFAG Lambert

38 SS58-60 1989 |1:250,000 USGS Lambert

39 ST 01-04 1983 |1:6,000,000 |SPRI Polar Stereo

40 ST 05-08 1983 |1:6,000,000 |SPRI Polar Stereo
Continued




41 ST 17-20 1991 |1:1,000,000 |IFAG Lambert
42 ST 21-24 1991 |1:1,000,000 |IFAG Lambert
43 ST 25-28 1991 |1:1,000,000 |IFAG Lambert
44 ST 57-60 1989 |1:250,000 |USGS Lambert
45 SU 01-05 1988 |unavailable |1GS' Unavailable
46 SU 16-20 1983 |1:6,000,000 |SPRI Polar Stereo
47 SU 21-25 1983 |1:6,000,000 |SPRI Polar Stereo
48 SU 56-60 1966 |1:250,000 |USGS |Polar Stereo
49 SV 01-10 1976 |1:1,000,000 |USSR® |Polyconic

Table 2.3 Original data source information based on ADD 3.0 (ADD Consortium, 2000)

Figure 2.6 SCAR ADD 3.0 coastline and grounding line (inside) of Antarctica
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CHAPTER 3

RIGOROUSORTHORECTIFICATION OF SATELLITE PHOTOGRAPHS

3.1 Introduction

Raw, remotely sensed image data gathered by a satellite are a representation of
the irregular surface of the Earth. Because they do not have a uniform scale, we cannot
directly measure distance on a satellite image. Instead, digital rectification techniques
must be used to generate a uniform-scale image map. Bundle block triangulation and
orthorectification using a DEM were applied to Argon DISP photographs with varied
terrain surface, and the orthorectified images were mosai cked to create a map-quality
image mosaic of the Antarctic coastal areas.

A simple photogrammetric and mapping technique using a DEM was
implemented to derive accurate positional information from Argon photographs acquired
over a specific sector of Antarctica (Kim et al., 2001). A single photo resection method
was used to orthorectify five Argon photographs. The orthorectified images were then
assembled into a common coordinate system. More rigorous orthorectification and
mosaic techniques were proposed by Zhou et al. (2002). 24 Argon photographs acquired
over the entire Greenland were integrated by the bundle adjustment method and satellite

orbital parameters, solving for interior and exterior orientations as well as lens distortion
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parameters simultaneously. In the case of featurel ess photographs, the parameters were
interpolated or extrapolated by the adjacent, known orbital parametersin the same orbit.
However, thisis not the case of the Antarctic coastal areas because as shown in Figure
2.1, most photographs are not in the same orbit.

This chapter explains the processes of geometrically and radiometrically
correcting the Argon photographs of the Antarctic coasta areas, so that they can be
represented on a planar surface, conform to other images, and have the integrity of a map.
The processes are basically similar to Zhou et a.’s, but without estimating interior and
lens distortion parameters. For this reason, the processes proposed in this study need

fewer control points, but preserve similar accuracy.

3.2 Digitizing Argon DI SP Photogr aphs

Argon was afilm-return system, and itsimagery is available in film product from
Earth Resources Observation Systems (EROS) Data Center (http://edc.usgs.gov/). Argon
imagery had an estimated film resolution of 30 line-pair/mm and a ground resolution of
approximate 140 meters. Thisisequivalent to a 33 um pixel resolution. Sampling theory
was applied to determine the range of acceptable spot size that preserves the original film

resolution (Light, 1993).

33um
2.2

33um

<scan spot size< 11um< scan spot size<17um
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Argon imagery was scanned at 7um, which is dightly smaller than the scan spot
size calculated by sampling theory using the INTERGRAPH PhotoScan TD® Scanner,
which is a high-resolution radiometrically and geometrically precise flatbed scanning
system.

There were two parameters that affect the appearance of a scanned image:
transmissivity and mapping function. Film transmissivity is a value that expresses the
percent of light that passes through film. Where no light passes, the transmissivity at that
location is zero. Transmissivity is close to 1 where film is completely transparent. A
mapping function is an equation that maps input film transmissivity values to output pixel
intensities (e.g, 0-255). Therefore, it isimportant that the minimum transmissivity (T ;)
and the maximum transmissivity (T, ) be as close as possible to the minimum and
maximum film transmissivity values of the photographs.

A test scan was conducted to determinethebest T ,, and T, settings for Argon
photographs. They were first scanned at alow resolution of 224 um with a default
transmissivity range of 0.001 and 1.0 and aliner mapping function. After conducting a

test scan, the minimum (G,,,,) and maximum (G, ) gray values were observed from the

histogram. T, and T_, werethen determined by:

(T max—T min)
255

(T max—T min)
255

Tmax_neW:( xGmaxj+Tmin

Tmin_new:( xGminj+Tmin
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Oncethenew T, and T __ valueswere determined, the imagery was scanned with these

valuesat 7 um.

3.3 Bundle Block Triangulation

Argon satellite photographs were captured with overlap areas. Thisis
advantageous and allows us to use the bundle block triangulation, which can incorporate
the minimum number of points distributed across several overlapping scenes. This
method is especially important in the image data over Antarcticawhere cloud cover can

obscure large sectors of an intermediate image.

3.3.1 Coordinate System

Three different coordinate systems are involved in orthorectifying the digitized
Argon images. They are the pixel, the image, and the object coordinate systems. Figure
3.1 shows the pixel coordinate system. This system is defined as a left-handed system,
because an image is often scanned from left to right in columns and from top to bottom in

rows. The origin of the pixel coordinate system isin the upper left corner.
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» Columns

v
Rows

Figure 3.1 Pixel coordinate system

The image coordinate system serves as the reference for expressing spatia
positions of the image space. Figure 3.2 shows the image coordinate system and the
configuration of Argon imagery with four fiducial marks. Itsorigin isin the perspective
center (PC). Thefiducial marks define the fiducial center (FC). The principal point (PP)
is mathematically defined as the intersection of the perpendicular line to the image plane
through the perspective center of the image space. The length from the principa point to
the perspective center is called the focal length (). If the optical system of camera has
some distortion, this point will be slightly different from the fiducial center. In other
words, the principal point corresponds to the fiducial center when an ideal camerais

assumed. Under this assumption, we used value (X, y) = (0,0) asthe Argonimage

coordinates of the principal point. Then, an image position is expressed as a point vector,
p=[x y -f ]T in the image coordinate system. This assumption is reasonable

because the bundle block method used in this study isindirect. That is, theideain bundle
block adjustment isto iteratively find the set of exterior orientation parameters, which

minimizes the squared errors of image coordinates for observations. The rays forming
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the bundles are made to intersect in the object space and errors are treated in the image

coordinate system, not in object coordinate system (Altmaier et a., 2002 and Shin, 2003).

A
PC Yy
( |
f< | \ ®  Fiducia Marks
FC  Fiducial Center
FCl/ P X PC  Perspective Center
g PP Principa Point
PP i Focal Length

Figure 3.2 Image coordinate system

For apolar research, the object coordinate system is often represented by alocal
three-dimensional Cartesian system with a plane tangential to the ellipsoid (WGS84) at
the center of theimage. Table 3.1 summarizes the relationships between the pixel, the
image, and the object coordinate systems with the associated procedures and the

underlying mathematical models.

Relationship Procedure Mathematical model

Pixel coordinate system and image coordinate system Interior orientation | Affine Transformation

Image coordinate system and object coordinate system | Exterior orientation | Collinearity Equations

Table 3.1 Relationships of three different coordinate system
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3.3.2Interior Orientation

Interior orientation defines the internal geometry of a camera, asit existed at the
time of image capture. The variables associated with the image space are defined during
the process of interior orientation. Interior orientation is primarily used to transform the
pixel coordinate system to the image coordinates system whose origin is at the center of

the image. Figure 3.3 shows the difference between the ( %, y) pixel coordinate system

and the (X, y") image coordinate system.

Figure 3.3 Pixel coordinate system vs. image coordinate system

Using atwo-dimensional affine transformation, the relationship between the pixel
coordinate system and the image coordinate system is defined. The following two-
dimensional affine transformation can be used to determine the coefficients required to

transform pixel coordinate measurements to the image coordinates:
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x=a +a,X+ay
3.
y=b +bxX+by (30

x and y are determined by the coordinates of fiducial marks in the image coordinate
system. The X andy’ pixel coordinates are the measured coordinates of fiducial marks

in the pixel coordinate system. They are used to determine six affine transformation
coefficients. The resulting six coefficients can be used to transform each set of row and
column pixel coordinates to image coordinates (Figure 3.2).

The affine transformation defines the tranglation between two different origins of
the pixel coordinate system and the image coordinate system. Additionally, the affine
transformation takes into account rotation of the image coordinate system. A scanned
image of a photograph is normally rotated due to the scanning procedure. The degree of
variation between the x- and y -axisisreferred to as nonorthogonality. The two-
dimensional affine transformation also considers the degree of nonorthogonality. Scale

differences between the x- and y-axis are also addressed using the affine transformation.

3.3.3 Exterior Orientation

Exterior orientation defines the position and angular orientation associated with
an image in the object space. The variables defining the position and orientation of an
image are referred to as the elements of exterior orientation. The elements of exterior
orientation define the characteristics associated with an image at the time of exposure.
The positional elements of exterior orientation define the position of the perspective

center with respect to the object coordinate system. The angular elements of exterior
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orientation describe the relationship between the object coordinate system and the image

coordinate system. The angular elements are omega (@), phi (¢ ), and kappa (x); @ isa
rotation about the x-axis, ¢ isarotation about the y -axis, and x isarotation about the

Z-axis.

Figure 3.4 Elements of exterior orientation

The collinearity model (Kraus, 1993 and Slama et al., 1980) determines the six
elements of exterior orientation. An overview of exterior orientation parametersis shown
in Figure 3.4. The collinearity model imposes the condition that the perspective center

P., theimage point P, and the object point P, must be on astraight line. If the exterior
orientation is known, then theimage vector p and the vector g in object space are

collinear:
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b=-4 (3.2

SN

Vector q isthe difference between the two vectors, ¢ and p. To satisfy the collinearity

condition, we rotate and scale vector g from object to image space. We have

1 1
 =—Rg==R(p- 3.3
Y 2 q 2 (p-c) (3.3)

with R an orthogonal rotation matrix consisting of the three angles @, ¢, and «:

COS( COSK —Cos@psSinK sng
R=R,R,R. =| coswsink+sSnwsin@cosk COSwCOSk—SN@SN@sink —siN@Ccosy
SNWSNK—COS@WSINPCOSK SIN@COSK+COS@SIN@SINK  COS@COSQY

Therotation matrix R is derived by applying a sequential rotation of @ about the x -
axis, ¢ about the y-axis, and x about the z-axis. Equation (3.3) renders the following

three coordinate equations:

1

X :z{(xp_xc)rll-i_(Yp _Yc)r12+(zp—zc)l’13}
1

y :z{(xp = Xy + (Y, =Y )r, +(Z, _Zc)rzs} (34)
1

_f :z{(xp = X+ (Y, =Y+ (Z, = Zo) s}
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where,

X,y are the observed image coordinates,

XY Z, are the corresponding object coordinates,
X Y., Z, are locations of the perspective center; and

f isthe focal length of camera.

By dividing the first by the third and the second by the third equation, the scale

factor % , iIseliminated leading to the following two collinearity equations:

rll(Xp - Xc)+ rlZ(Yp _Yc) + rl3(Zp _Zc)
r31(Xp_Xc)+r32(Yp_Yc)+r33(Zp_Zc) (3 5)
_f r21(xp - xc)+ rZZ(Yp _Yc)+ r23(zp - Zc)
r3l(xp - Xc) + r32(Yp _Yc) + I’33(Zp _Zc)

X, Y., Z,, w, ¢, and xarethe unknown parameters of exterior orientation. One

set of equations can be formulated for each object point appearing on an image.

3.3.4 Bundle Block Adjustment

The bundle block adjustment is the process of establishing a mathematical
relationship between the images, the camera model, and the object. This process
provides a cost, time effective way for processing multiple images forming a block.

Since the block is being processed in one step, the whole process is much faster than if
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each image is processed individualy. Thisis mainly due to the number of control points
required per image being gresatly reduced. In addition to control points, tie points
measured in overlap areas of two or more images are used for geometrically connecting
the images. Although the object coordinates are unknown for the tie points, they increase
the stability of the block and assist in finding the relationship between theimages. For
this reason, despite fewer control points, bundle block adjustment resultsin better
accuracies than if each image is processed individualy.

A bundled solution is computed including the exterior orientation of each image
andthe X, Y, and Z object coordinates of tie points. The bundle block adjustment uses
the collinearity condition as the basis for formulating the relationship between image
space and object space. A block of images is simultaneously processed in one solution.
A statistical technique, known as least squares adjustment, is used to estimate the bundled
solution for the entire block while minimizing errors.

Once the bundle block adjustment has been solved, the exterior orientation
parameters of each image are known. These parameters together with a DEM can then be

used to perform the image orthorectification.

3.3.5 Least Squares Adjustment

Least squares adjustment is a statistical technique that is used to estimate the
unknown parameters associated with a solution while minimizing errors within the
solution. With respect to bundle block adjustment, least squares adjustment techniques

are used to estimate the exterior orientation, the X, Y, and Z object coordinates of tie
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points. Errorsin the estimated result are attributed to the inaccuracy associated with the
measured tie points and control points, camerainformation, and systematic errors.
A simplified version of the least squares observation equations can be introduced

by the Gauss Markov model (Koch, 1988) as follows:

y=Af+e e~N(0,0,°p™") (3.6)
where,

y isa(nx1) vector of observations;

A iIsa(nxm) matrix of partial derivatives with respect to the unknown

parameters, including exterior orientation and object coordinates of tie

points;
s isa(mx1) vector containing the corrections of the unknown parameters;
e isa(nx1) vector of errors,
n is the number of the observations;
m is the number of the unknowns,
o, isthevariance component of observation; and
p isa(nxn) weight matrix of the observations.

It must be noted that only over-determined cases are considered in photogrammetric
approaches. In other words, the number of observationsis larger than the number of

unknowns (e.g., n>m). The & vector is then estimated in the following manner:
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é=(ATpA) A py

(3.7)

The dispersion of the estimated parameters f can be also derived from the law of error
propagation:
D{&} =0 (AT pA)

(3.8)

The predicted residual vector, écan be computed as é=y— Az_’? Finally the estimate for
the variance component &, can be:

(3.9
where (n—m) isthe redundancy of the system. The estimated variance-covariance

matrix of f is expressed by:
D{&} =62 (A pA) (3.10)

At this point, it must be noted that the Gauss Markov model depicted by Equation
(3.6) assumes alinear relationship between observations y and unkown parameters & .

The collinearity equations in Equation (3.5), however, show highly non-linear

relationship between the unknown parameters and the observations. The non-linearity
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can be eliminated by performing linearization using Taylor’s series expansion with initia
values for the unknown paramters.

By linearizing the collinearity equations, the components of the least squares
condition are directly related to the functional model based on collinearity equations.
The A matrix isformed by the differencing the functional model with respect to the
unknown prarmters such as exterior orientation and object coordinates of tie points. The

partial derivatives of collinearity equations are shown in Appendix B. The y vector is
formed by subtracting the initial results obtained from the functional model with newly

estimated results determined from a new iteration of processing. The & vector contains

the corrections to the unkown parameters.

For every point in the image coordinates, we obtain two equations that have non-
zero coefficients for the six exterior orientations of each image and three coefficients for
the object coordinates of each tie point. Adding all observation equations for every
measured point in the image coordinates, a design matrix of A can be depicted as Figure

3.5

ID Points

TPs
CPs
TPs Seor x-X°
CPs = | yy°
TPs :

CPs
TPS &TP
CPs

A E = vy

Figure 3.5 Structure of observation equations
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The necessary approximations to the unknowns can be derived in various ways.

For satellite photographs with approximately vertical axes, we can set approximations for

the photo-tilts of @° = ¢° =0. The approximation x° can be taken from the overview of

all photographs (seein Figure 3.7). Theinitial approximate rotation matrix R° for a

photograph is obtained then:

cosk® —-sink® O
R°=R_=|sink® cosk® O (3.12)
0 0 1

The approximate coordinates X °, Y.° and Z_° of the perspective centers and the
approximate coordinates X °, Y,° and Z_° of thetie points can be derived with the help

of theintial approximate rotation matrix R°.

3.3.6 Grand Adjustment

A special concern is aso required for the object coordinates of control points,
because the accuracy of control points may not always be good enough for a mapping
application. In thiscase, we can aso consider the object coordinates of control points as
additional parameters to be adjusted during the least squares process (Schaffrin, 1998).

The additional mathematical model for this case is given by:
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X1 [X X2 [dX,
Y =Y |[+e=| Y° |+| dY, |[+e
Z

i Z z°| |dz
X -Xx°] [dX,
Y-Y° |=| dY, |[+ee~N(0,0,°p ) (312
zZ-z°| |dz
where,
X, Y, Z are the observed control points;

X.%,Y°,2° aretheinitia values of the observations; and

e is the noise vector contaminating X,Y, and Z .

It must be noted that the |eft-hand side of Equation (3.12) is numerically zero for using
the observations themselves as intial values. The effect of the errors in the coordinates of
the control points, however, will smear into the adjustment process and affect the
estimates of unknown parameters. By combining all the observations and unknown
parameters in Eequation (3.6) and (3.12), we can set up the observation equations for the

Grand-Adjustment process (Schaffrin, 1997):

BHQ ﬂ EHE} (313)

where,
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Y, is an observation vector in the image coordinates;

Y, IS an observation vector in the object coordinates of control points;

& isan unknow vector in the image coordinates;

&, isan unknow vector in the object coordinates of control points;

A are the matrices of the partial derivatives related to the parameters & and
&, , respectively;

I isan identity matrix; and

€., 8, are the noises contaminating vy, , Y, respectively.

Finally, the observation equations for bundle block adjustment can be found as:

A RN 19

3.4 Orthorectification

Orthorectification is the process of removing geometric errors inherent within
imagery. The variables contributing to geometric errors include camera orientation,
topographic relief displacement, and Earth’s curvature. By performing bundle block
triangul ation, the parameters associated with camera orientation are defined. Utilizing
least squares adjustment techniques during bundle block triangulation minimizes the error

associated with camerainstability. The effects of the Earth’s curvature are significant if
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satellite imagery ininvolved. They can be eliminated during bundle block triangulation
procedure by introducing athree-dimensional reference system. The effects of
topographic relief displacement are considered by utilizing aDEM during the
orthorectification procedure.

Relief displacement is corrected by taking each pixel of a DEM and finding the
equivaent position in the satelliteimage. A brightness value is determined for this
location based on resampling of the surrounding pixels. The brightness value, elevation,
and exterior orientation are used to calcul ate the equivalent location in the orthorectified
image. The orthorectification procedures that find gray values of the orthorectified image
are shown in Figure 3.6. A proper resampling method such as nearest neighbor, bilinear
interpolation and cubic convolution isrequired for finding gray values at the non-integer
location. Generally, when the cell sizes of orthorectified image pixels are selected, they

should be similar or larger than the cell sizes of the original image.

ZA )/

DEM
»ortho-plane

(X,Y)

Figure 3.6 Principle of orthorectification
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3.5Mosaicking

Mosaicking is the process of combining georeferenced imagesinto asingle
composite image covering alarger geographic area. In this case, there are often intensity
differences that cause artificial edges at the seam between adjacent images. These
intensity differences are mainly due to changes in atmospheric transmittance and in
illumination caused by different Sun angles. Seasonal changes of surface reflectance also
contribute to the artificial edges in the output mosaic.

M osaicking processes usually require scaling (or radiometric balancing) to
minimize image difference in the mosaic. Thus, the first step isto contrast stretch the
images. Thisisdone by adjusting the average gray level of each image to the similar
value. The second step isto define a cut-line in overlapping area. A simple, minimum
distance algorithm is used for finding pixels that have minimum differencesin
overlapping area. The cut-line is a polyline defined along the feature boundary in

overlapping area.

3.6 Argon DISP Image M osaic of the Antarctic Coast, 1963

Animage mosaic of the Antarctic coast was produced from 1963 Argon DISP
satellite photographs. First, Argon photographs were digitized at 7 um using the
INTERGRAPH PhotoScan TD® Scanner, which is high-resolution radiometrically and
geometrically precise flatbed scanning system. Second, the digitized images were
orthorectified and resampled into a conformal map projection (e.g., Polar Stereographic

with the standard parald at 71° S) with aresolution of 100-m using bundle block
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triangulation, the OSU Antarctic DEM, and control points selected from the
RADARSAT-1 Antarctic Mapping Project image mosaic. Finaly, the orthorectified
images were mosaicked to create a map-quality image mosaic of the Antarctic coast in

1963.

3.6.1 Problems and Solutions

The fundamental problemsin producing accurate image maps of the Antarctic
coast using Argon data were that more than 40% of the imagery contained significant
cloud cover and that little information is available about the satellite design. Although
satellite ephemeris and camera orientation data derived from stellar photography are
available, accuracy in locating corner coordinates derived from the collateral materiasis
more than approximately 80-km at the corners of the images (at
http://edc.usgs.gov/guides/displ.html).

The best way to produce a useful, accurate Antarctic image map using Argon data
was to use the small number of control points relating image coordinates to object
coordinates. Argon photographs were taken with some overlaps between adjacent
photographs, so that bundle block triangulation enabled incorporation of many control

points for each image.

3.6.2 Orthorectification and Mosaic

Based on visual inspection of browse images available at EROS Data Center, an

optimal data set of 62 Argon DISP photographs covering the entire Antarctic coast (see
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Figure 2.1) was identified. From this data set, 15 blocks were created for bundle block
triangulation. Each block consisted of 2 to 5 photographs by considering the cloud cover
and control pointsin the block. We note that since the accuracy of pointsin the case of a
strip block depends primarily on the number of photographs bridged between control
points, it isacommon practice not to bridge more than 5 photographs to be considered in
ablock (Kraus, 1993).

Figure 3.7 shows one of the blocks illustrating a schematic overview of bundle
block triangulation. The overview shows 5 Argon photographs taken over the Antarctic
Peninsula. For the orientation of this block of photographs, we selected 17 control points
and 12 tie points on the block image. 9 tie points were selected from the areas
overlapped by 2 neighboring photographs, and 3 tie points were selected from the areas
overlapped by 3 neighboring photographs. The planimetric control points were selected
by identifying common featuresin the orthorectified RADARSAT-1 SAR image mosaic
with 100-m pixel resolution and the corresponding vertical control points taken from the
OSU Antarctic DEM with 200-m pixel resolution. The summaries of the balance
between unknowns and observations for bundle block adjustment and the uncertainties of

observations are shown in Table 3.2.
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A Control Points
O TiePoints

Figure 3.7 Geometric network of observationsin an image block

Number of Photographs 5
Number of Control Point 17
Number of Tie Points 12
9x2x2=36
Number of Observations 3x2x3=18 88
17x2=34
6x5=30
Number of Unknowns 12 x3=35 66
Redundancy 88 - 66 22
Number of Iteration 6
¢ of image coordinate 14-um
o of object coordinate 100-m

Table 3.2 Summaries of block statistics
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The uncertainties were estimated for the observations to indicate the quality of the
observations. The uncertainty of the measured image coordinates was estimated to be 14
um (two pixels) as a measurement error of the Argon imagery. The uncertainties of the
measured object coordinates were estimated to be 100-m (one pixel) as a measurement
error from the RADARSAT-1 SAR imagery. These uncertainties were weighted
inversely proportional to the uncertainty values, so that points with high error affected the
solution less than points with lower error.

For Argon satellite photographs with approximately vertical axes, we set initial
approximations for the photo tilts of @° = ¢° =0. The approximation x° was taken from
the overview of all photographs (Figure 3.7). Theinitial approximate rotation matrix for
a photograph was obtained from Equation (3.12). The approximate coordinates

X2, Y.° and Z_° of the perspective centers and the approximate coordinates
0 0 0 . . . . . . . .
X, .Y, and Z ° of thetie points were derived using the intial approximate rotation

matrix.
The estimates of exterior orientations using bundle block adjustment and

geometric network of observations (Figure 3.7) are shown in Table 3.3, respectively.

Positions (m) Rotations (degree)
Id X Y Z o | ¢ | &

C Cc C
014115 | -2366570| 1218244 335550 -0.2 -0.2| 838
029077 | -2393420| 981917 362357 0.7 16| -292.6
029079 | -2040780| 823749| 352517 0.5 -1.3| 674
045078 | -2276139| 721396| 353903 -0.3 -1.5| -287.9
045080 | -1885907| 592969| 349985 -0.5 -05] 724

Table 3.3 Estimates of exterior orientations
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These exterior orientation parameters of each image were used to perform the
image orthorectification with aresolution of 100-m using the OSU Antarctic DEM.

Figure 3.8 shows the resulting Argon image mosaic of the Antarctic Peninsula.

Figure 3.8 Image block mosaic of the Antarctic Peninsula
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Coordinates measured on the resulting mosaic must satisfy certain expectations.
On the other hand, they must be as accurate as the application demands and, on the other
hand, there must be a guarantee that the results are thoroughly checked. Quality control
therefore comprises of accuracy.

The unknowns in a bundle block adjustment were the coordinates of the tie points
and the control points and the accuracy of these points were calculated from the diagonal

elements of the inverse of the normal matrix (AT pA) and the estimate of the variance

component &,° using Equation (3.10) as follow:

o = /o, diag(A" pA)™ (3.15)

Table 3.4 shows the summary of orthorectified image blocks and their error
statistics, and Figure 3.9 shows the orthorectified Argon image mosaic of the entire
Antarctic coast. Figure 3.10 shows a configuration of the entire GCPs derived from
RADARSAT-1 SAR image mosaic and used for the bundle block triangulations. The

detailed map coordinates of the entire GCPs are attached in Appendix A.
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Ox (m) Oy (m) O (m)
Blocks | #photos | #CPs | #TPs cp TP cp TP P TP
1 4 17 9 104.94 | 139.18 | 127.07 | 122.32 | 164.80 | 185.29
2 2 8 3 9322 | 188.24 | 14862 | 18164 | 17543 | 261.58
3 3 6 6 163.49 | 166.63 61.53 4752 | 17462 | 173.27
4 3 7 6 15.99 85.05 10.13 32.06 18.92 90.89
5 3 7 7 100.02 | 144.40 56.53 | 126.40 | 114.88 | 191.90
6 5 17 9 50.05 | 141.23 | 147.68 82.64 | 155.93 | 163.63
7 2 8 3 154.41 58.92 | 167.79 | 184.32 | 228.02 | 193.50
8 4 14 9 111.17 | 190.13 91.40 | 184.88 | 143.91 | 265.19
9 4 18 7 161.31 89.09 | 178.86 82.20 | 240.85| 121.21
10 3 10 5 120.75 | 111.21 8435 | 130.23 | 147.29 | 171.25
11 2 7 3 50.35 | 167.97 | 11193 | 12558 | 12273 | 209.72
12 4 14 8 121.58 | 107.15 84.83 | 170.93 | 148.24 | 201.73
13 4 17 11 138.35 | 149.44 | 15441 | 14221 | 207.32 | 206.29
14 4 10 12 112.30 | 12851 52,70 | 123.84 | 124.05| 178.46
15 5 17 12 104.73 | 123.82 60.27 | 144.86 | 120.83 | 190.56

Table 3.4 Summary and error statistics of orthorectified image blocks
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Figure 3.9 Orthorectified Argon DISP image mosaic of the entire Antarctic coast, 1963 in
apolar stereo graphic map projection with standard parallel of 71°S (WGS 84)
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Figure 3.10 Configurations of the entire GCPs used for bundle block triangulations
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3.6.3 Summary

The individual Argon photographs are important resources for measuring the
geometry of the coastline of Antarctica. By using the most modern digitizing technology,
bundle block triangulation based on tie points, and control points derived from the
RADARSAT-1 SAR image mosaic, we accuratel y assembled the individual imagesinto a
map quality mosaic of Antarcticaasit appeared in 1963. The standard deviations of the
resulting image blocks satisfied our mapping application to the Antarctic coastal change
within two-pixel accuracy. This became another important benchmark for gauging the

response of the Antarctic coastline to changing climate.
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CHAPTER 4

AUTOMATED BOUNDARY DETECTION SOFTWARE DESIGN

4.1 Introduction

Segmentation is the process of grouping an observed image into its homogeneous
regions. It may also be thought of as alabeling process, where each pixel in the observed

image is assigned to alabel designating the region or class to which it belongs (Li, 1995

and Tso et a., 2001).

Let y bethe observed image intensities defined on a mxm rectangular lattice
S={(,])|1<i, ) <m}, then thelabels x may be defined on an identical lattice S.
For each site s=(i, j), thereisalabel x, specifying to which region the observed pixel
value y, belongs. The relationship between the observed image intensities and the labels

can be formulated by Bayesian likelihood functions as follow:

Pr(y|x) Pr(x) (4.1)

Prixly) =25
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where Pr(x) isthe prior probability density function (PDF) of labels x, Pr(y|x) isthe

conditional PDF of the observed image intensities y given x, and Pr(y) isthe PDF of

y.

A maximum a posterior (MAP) criterion that maximizes the posterior PDF

Pr(x|y) with respect to x, providesthe estimate of x giveny asfollow:

Xep = Argmax Pr(x| y) (4.2

xe X

Because Pr(y) in Equation (4.1) isaconstant for afixed y, Pr(x|y) isproportional to

the following joint PDF.
Pr(x|y) e Pr(x, y) = Pr(y [ X) Pr(x) (4.3)

If two random variables x and y are taken to be a Gibbs distribution (GD) with
respect to aneighborhood system n ={7, |se S,n, = S}, the joint PDF Pr(x|y) isgiven
by:

Pr(x| ) = 5 &xp[-U (| y)] (44)

where Z is caled the partition function that is ssmply a normalizing constant, and

U (x]y) iscaledthe energy function of x given y.
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The joint PDF has the physical interpretation that the smaller U (x| y), the larger

Pr(x|y) ; consequently the MAP estimate in Equation (4.2) is equivaently found by:

Xep = argmin{U (x| y)} (4.5)
where,
Ux|y)=U(y[x)+U(x) (4.6)

U (y]|x) isthe conditional energy function of y given x, and U (X) isthe prior energy
function of x. Sothe MAP estimate for alabel x given an observed image intensity y
at site s isdirectly correlated with the conditional energy function U (y|x) and the prior
energy function U (X) .

In practice, there are difficultiesin using this MAP estimate. Problems are that
the prior information or information concerning the image distribution may not always be
available. The Markov random field (MRF) model has been used in determining the
prior and conditional PDF (Besag, 1974; Geman and Geman, 1984; Derin and Elliott,
1987; Dubes and Jain, 1989; Geman and Reynolds, 1992). The parameter estimation
problem isacrucia issue for the MRF methods, and their performance depends on the
availability of correct parameter estimates. These methods work well in supervised
mode, where the number of regions and their associated parameters are known. In

unsupervised mode, when such knowledge is not available, a problem arises: The main
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problem is that the model and its parameters are unknown and need to be computed from
the given image before segmentation. To compute the parameters effectively the
segmented image itself is needed. Simultaneous parameter estimation and segmentation
is often computationally prohibitive.

Chellappa (1985) and Lakshmanan & Derin (1989) proposed an aternative
strategy, which performs a two-step process: first estimating the parametersin small,
non-overlapping regions and performing a coarse segmentation, and then estimating the
parameters again from this segmented image using a stochastic relaxation algorithm, such
as simulated annealing (Geman and Geman, 1984), iterated conditional modes (Besag,
1986), and maximizer of posterior marginals (Marroquin et al., 1987).

Such algorithms are effective when segmenting images composed of large regions
with distinct classes, however, if the class pattern in the images is more complicated then
the algorithms perform poorly because they use a windowing function to estimate model
parameters (Barker, 1989).

In this study, the fuzzy c-means clustering (FCM) technique (Bezdek et al., 1984)
is adopted to improve segmentation performance during the first step process. The
computed FCM estimates are then combined with maximizer of posterior marginals
(MPM) to obtain an optimum segmentation of the image. The MPM algorithm is similar
to ssimulated annealing and iterated conditional modes, but because any cooling schedule
does not exist, it is much faster than others. The proposed Bayesian framework of image

segmentation is shown in Figure 4.1.
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Grey Level Image

!

Gaussian Mixture Estimation

!

FCM Classification

!

MAP Segmentation

!

Labeled Image

Figure 4.1 Proposed framework of the Bayesian approach to image segmentation

4.2 Segmentation Pre-processing

Noise can be thought of as arandom event, which corrupts the signal
corresponding to an image. It is undesirable because it changestheimage. Thus, if we
apply a segmentation technique to the corrupted image without any removal or reduction
of noise, we may not successfully achieve our goal in grouping an image into its
homogeneous regions. Many techniques have been developed to remove as much of the
noise as possible (Lee, 1980; Kuan et a., 1985; Naderi & Sawchuk, 1978; and Froehlich
et a, 1981). However, these techniques while removing noise also alter the image, for
example, by blurring the edges of the signal due to the use of local statistics computed

within afixed window neighborhood (e.g., 3x3). Thus, one of the main requirements to
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an algorithm for image enhancement is that the main features of the image as well as their
location must be preserved.

In this study, as a segmentation pre-processing, we use the adaptive neighborhood
approach to filtering images corrupted by signal-dependent noise (Rangayyan et d.,
1998). They proposed a new method for filtering images corrupted by signal-dependent
noise based on the linear minimum mean square error (LMM SE) estimation, which
requires the first- and second-order statistics of the image. This method estimated the
signal and the noise statistics within variable-size, variable-shape neighborhoods around
the pixel being processed, instead of within fixed-size, fixed-shape neighborhoods. The
neighborhoods were grown for the seed pixel in such away that they contain only pixels
belonging to the same object as the seed. The statistics computed in this manner were

used to derive the final estimate of the pixel being processed.

4.2.1 Noise M od€

When images recorded on photographic film are digitized to be processed by a
digital computer, film-grain noise could be an important source of degradation of the
information (Froehlich et al., 1981). The model of an image corrupted by film-grain

noiseis given by:

Ys =X+ D- F(Xs) : uls + uzs’ ul’zs - N(O’ 0-1,22) (47)
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where y, isthe noisy image; x, isthe uncorrupted image; u', and u®, are samples from
two Gaussian-distributed, uncorrelated, zero-mean random processes uncorrelated with
the signal and with variance ¢,? and o, respectively; F(x)=+/x;and D isa
proportionality factor. This noise model is composed of two components: oneis signal
dependent through the factor D\/Z u’, and another is signal independent given by u’..

Equation (4.7) can be simply rewritten as an additive noise mode!:

ys = Xs + es’ es - N(O’ O-ez) (48)

where e, = D,/ f_ u', +U’,. It can be easily shown that e, is stationary with azero-mean

and avariance as follow:

o, =D*E{x}o,’ +0,’ (4.9)

To derive the linear mean-squared error estimates (LMM SE) of this model, we
regard further the image as a sample realization of arandom filed, which has the

following characteristics:
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C{x,,e,}=0 foralsands
" no correlation bewteen the signal and the noise"
0 fors=¢ 4.10
C{ e, es,} = { ) , ( )
o, fors=s

"uncorrelated (homoscadi estic) noise process'

4.2.2 Linear Minimum Mean-Squares Error (LMM SE) Estimator

If we restrict ourselves to the class of estimators that are liner functions of the

observation y, the LMMSE estimator is afunction of the first and second moments of x

andy. Then, the LMMSE estimate X can be computed for minimizing the M SE,

E{(x-%) (x-%)} asfollow:
X=E{x}+C,C, (y-E{y}) (4.11)

where this LMM SE estimate requires the following information:

E{x}: themean of x

E{y}: themeanof y

C.: thecross-covariance matrix of x andy
C, = El(x—E{x})(y-E{y})']

C, : theauto-covariance matrix of y

C,y = El(y-E{yN(y-E{y})']

e

(4.12)
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If x hasmean g, and varianceo,’, the first- and second-order statistics of the observed

image can be described by using the characteristics in Equation (4.12):

u,  =E{y
=E{x+¢€
=E{x
=l

(4.13)

o =D{y}
=D{x+¢
= D{x} + D{¢}

=0’ +07

(4.14)

C, =Elly-4,)]
= E[(x+e-4,)’]
= E[(x~4,)°]+ E[2(x~ 4,)¢] + E[€/]

=0’+0.

(4.15)

Cy  =El(x=p)y—u,)]
= E[(X—,UX)(X—,UX +e)]
= E[(X_:ux)z] + E[(X_lux)e]
= O'XZ

(4.16)

Then, the LMMSE estimate X in Equation (4.11) is ssimplified by

>

= U, + nyny_l(y_luy)
2 4.17)

=yt — s (Y1)
y O'2+O'2 y
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Equation (4.17) is equivalent to the Lee filter (Lee, 1980) in Equation (4.18), which was
originally derived to deal with signal-independent additive noise and signal-dependent

multiplicative noise, based on afixed window neighborhood (e.g., 3x3)

2 2

o, -0,
=My +T(y—ﬂy) (4.18)

y

x>

4.2.3 Adaptive Region Growing

Before correctly using Equation (4.18), aregion must be grown for the seed pixel
in such away that it contains only pixels belonging to the same object as the seed pixel

using the following tolerance property.

Vo= V| <T (4.19)

where y, isthe seed pixel, y, isthe pixels eight-connected to the seed pixel, and T isa

threshold of the adaptive neighborhood. Figure 4.2 shows a flowchart of the adaptive
region growing procedures for one pixel intheimage. Thefirst step in the proceduresis
tolocally (3 x 3 window) estimate the seed value for the pixel being processed using the
alpha-trimmed mean filter (Pitas and V enetsanopoulos, 1992), which is good for
eliminating large amplitude spikes of noise while preserving boundaries present in the
image. The noise standard deviation given by Equation (4.9) is then computed by using

the seed value, and thisis assigned to the threshold T . The adaptive region growing is
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performed to inspect the seed neighborhoods for inclusion in the region according to the

criterion in Equation (4.19).

Start

~

L J
Estimate seed vahie, 21 j)
Comgpute threshald, T
Ldd gL, 7] to FO

¥
Update seed
Set gk, 1) in F() a5 current S
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Inspect gk, 1)

Sstisfy eq.
4‘— Yes (41977 M 0—+
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I I

@,\ .

inspected?
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|
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Compute seed estimate using
statistics witlun the region

Figure 4.2 Adaptive region growing procedures (Rangayyan et al., 1998)
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After the region growing procedure stops, there are three types of pixels:

foreground pixels, background pixels, and un-inspected pixels (Figure 4.3).

.
// /

Q/

// / B Un-inspected pixels

/ / / / / / Background pixels

[] Foreground pixels

Figure 4.3 Three types of pixels constructed by adaptive region growing

Because a region does not contain background pixels inside the region, some of the
background pixels must be checked further for inclusion in the region. The addition
criterion for further inclusion of selected background pixelsin the regionisto find al
background pixels whose 8-connected neighbors are all either in the foreground or in the
background.

After aregion is completely grown, statistics of the signal and the noise are
computed by use of the pixelsin the foreground. Finally the LMMSE is estimated based
on Equation (4.18), and its mean squared error (M SE) between the original and the

filtered images is computed by
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MSE =33 [x- %] (4.20)

4.2.4 Examples and Discussions

To simply test the adaptive neighborhood filtering (ANF) described in this
section, a synthetic image (256x256) with a set of four gray values (50, 100, 150 and
200) was created and normalized between 0 and 1 in double precision. The synthetic
image is shown in Figure 4.4. Gaussian white noise (o = 0.01) and multiplicative
speckle noise (o = 0.04) were simulated with the normalized image. Figure 4.5 shows

the images corrupted by simulated noises and their histograms, and Figure 4.6 shows the

images filtered with the ANF and their histogram.

Figure 4.4 The synthetic image (256x256) normalized between 0 to 1 in double precision
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Figure 4.5 Images and histograms corrupted by (a) simulated Gaussian white noise with
o’ =0.01 and (b) simulated multiplicative speckle noise with * = 0.04.

65



1000

@
500

0 50 100 150 200 250

1500

1000

500

0 50 100 150 200 250

Figure 4.6 Images and histograms filtered with ANF over (a) simulated Gaussian white
and (b) multiplicative speckle noises

Finally, the results produced by the ANF were analyzed using the MSE in
Equation (4.20). Table 4.1 summarizesthe MSE values. The results show that the filter
provided good noise reduction and less blurring edge features on the images corrupted by
both Gaussian white and multiplicative speckle noises, but a better result was yielded on
the image corrupted by Gaussian white noise than multiplicative speckle noise. Thisis
because the filtering algorithm is based on the correct noise model, and the noise model

used in Equation (4.9) was about Gaussian film-grain noise. It impliesthat if the correct
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noise characteristics are given, the filter would provide good noise reduction while

preserving edge features.

I mages Noise Filtered Filtered/Noise
Gaussian 637.5790 39.2391 6.15 %
Speckle 732.3999 75.4480 10.3%

Table 4.1 MSE values for the noisy image and the results of filtering

4.3 Gaussian Mixture Density Estimation

Expectation Maximization (EM) algorithm (Dempster et al., 1977) is used to

estimate the PDF of an observed image. In order to model the PDF of the image,

Gaussian mixture model (GMM) is often used. The PDF of the image is modeled as

weighted sum of anumber of Gaussian distributions. A Gaussian density function is

given by:

(y-n)°
2

eZo‘

Pr(y) =

2o

with the mean x and the variance o”.

K Gaussian densitiesis then:

a(y) = Z”k P (Y; 4 0y)

(4.21)

y isan observed gray value. A weighted sum of
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where p,(Y; ., 0,) arecomponent densities, and z, are mixture weights. Thus, a

GMM presents each class of image as alinear combination of several Gaussian densities
intheimage. Thelinear combination of Gaussian basis functionsis used to form smooth
approximations of arbitrarily shaped densities.

The means, variances and mixture weights of all Gaussian functions together
parameterize the complete Gaussian mixture density. These parameters are collectively

represented by the following notation:
0={n,u.,ot, k=1--,K (4.23)

The mixture weights satisfy the following constraint:

> =1 (4.24)

We compute the parameters of the model by maximizing the log-likelihood of the joint
probability density of yand x. Now X isunobserved, thus wetry to estimate the

marginal density of x

D9y, x.0) (4.25)
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and then apply the maximum likelihood (ML) method. In order to do that, assume we
have aguess 8’ of the value of the parameters, and consider a series of observed feature
vectorsof Y ={y,,---, ¥} . Thusif we are able to construct afunction Q(4,6’,Y) that
estimates the log-likelihood of y given the guess &’ of the parameters and the observed
feature vectors on y, then we can find a new estimate of the parameters that maximize
Q. This procedure can be repeated to find a sequence of better approximations of 4.

Such an iterative algorithm is called EM and can be summarized the following steps:

First, the expectation-step constructs a log-likelihood function Q based on the previous
guess &". Second, the maximization-step maximizes the log-likelihood function Q. For
the expectation-step, we can choose Q as the expected value of the log-likelihood of y

given the observed feature vectors, that is:

M=

Q(9,9’,Y)=E{ Zlog(g(xk,yi;e)lY}

k=1

[M= 20 TPV

> log(g(x*, vi; ANg(x* | y;;6)

X

z)ﬁk log(7, p (Y, ;ﬂi,’q,))g()ﬂk ly;;6)

Il
M= 1= 1=

Il
N
=

Il

<x*>log(z p (Y 14 7))

1

where,
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<x“>=3 x*g(x"| ;6
_ 2,90 1%:0)g06)x"
a(y;;0)
i) (4.26)
> 90 1%560)9(%%)
ﬂ.i,pk(yi;,ui,,O'i,)
lej:l”i, pk(y| ;,Ui,,Gi’)

Then we have to optimize Q using the following Lagrange target function:

L= < X" > log(, B (¥ e ) + A0 D7) 427

N
i=1 k=1 k=1

where A isthe Lagrange multiplier. Taking derivative of L with respect to the
parameters z,, 4, and o, , and recalling aweight constraint in Equation (4.24), we can

get the following formulas:

N k Nk
e e AL PRI, e
aﬂ-k -1 Ty N
d N o xks (v — A _’\_‘<)§k >y
aQ :z X (2y| ) =0 = [, :Z:"’fl—k (4.28)
He  ia o Zi:1<)g N
N k N2 2 N _ ok e
dQ =y <% >[(y, Sfrk) Y 35§=Z‘=1<)1 >(Y: — i)
aGk i=1 o K Zi:l< )ﬁk >
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These formulas give us new estimation for € given the current estimation 8" and the
observation Y .

The EM algorithm is guaranteed to find alocal maximum likelihood model
regardless of theinitiaization, but different initialization can lead to different local
maximum (Dempster et a., 1977). Inthis study, we set theinitial parameters based on

the maximum intensity value of the observed image as follows:

o K
“05K(K +1)
_(k-OM M

K 2K

(4.29)

k

o, =M

where M isthe maximum intensity value of the observed image and K isthe number of
Gaussian mixture densities.

Gaussian mixture densities of the images filtered with the ANF in Section 4.3
were estimated to verity the EM algorithm. Figure 4.7 shows the estimated Gaussian
mixture density functions (red) in comparison of the original histograms (blue) derived
from the filtered images shown in Figure 4.6. Table 4.2 summarizes the numerical values

of the derived Gaussian mixture parameters.
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Figure 4.7 Examples of Gaussian mixture density estimation

o

0.8

o

. Gaussian Speckle
Regions - - - -
Weight Mean Variance Weight Mean Variance
1 0.251561 | 49.434998 | 59.762581 | 0.250363 | 49.950577 15.893703
2 0.249173 | 99.546959 | 34.284313 | 0.250571 | 99.929138 47.120289
3 0.250614 | 149.868866 | 28.458136 | 0.256316 | 149.845215 | 89.353882
4 0.248652 | 199.922546 | 23.641296 | 0.242748 | 199.403946 | 128.545135

Table 4.2 The derived Gaussian mixture density values
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4.4 Conditional Probability Density Estimation

Fuzzy c-means clustering (FCM) is a data clustering technique in which each data
point belongs to a cluster to some degree that is specified by a membership grade. This
technique was originally introduced by Bezdek (1984) as an improvement on earlier
clustering methods (e.g., ISODATA). It provides a method that shows how to group data
points that populate some multidimensional space into a specific number of different
clusters. The fuzzy membership function produced by this FCM algorithm serves as a
class-conditional probability density to a Bayesian image segmentation that produces the

final segmentation results.
Let Y ={V,,Y,,.... Y}, beafinite subset of R, the d -dimensional real number

vector space (i.e., where two features are used for clustering, d =2). Let theinteger

C, n>c 22, denote the number of fuzzy subsets. Thus, afuzzy c-partition of Y can be
represented by a (cxn) matrix U in which each entry of U, denoted by u, , satisfiesthe

following two constraints:

u, [0, and > u, =1, foral k (4.30)

i=1

The resulting matrix is shown in Figure 4.8. Thevalue u, corresponding to the

entry at the location (i,k) represents the membership value of the kth pixel for class i .

All the entries in a given column must sum to one as specified in Equation (4.30).
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Figure 4.8 FCM membership matrix (cxn)

The clustering criterion used in the FCM algorithm is based on minimizing the

generalized within-group sum of square error function J,:

n C

InU V)= > u"(y, - V)%, for IS m<oo (4.31)

k=1 i=1

where V = (v,,V,,...,v.) isthe vector of cluster centerswith v e R, and m isthe

membership weighting exponent. For m>1 and y, #v,, aloca minimumof J_ is

achieved under the following circumstance:

1
Uy =

5 for al k (4.32)

i(wk—vi |]m

j=1 |yk -V, |
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and the ith cluster mean v, is calculated from:

v =kt foralli

The FCM agorithm starts with a set of initial guesses for the cluster centers,

(4.33)

which are intended to mark the mean location of each cluster. Using theseinitia cluster

centers, FCM assigns every data point a membership grade for each cluster. By

iteratively updating the cluster centers and the membership grades for each data point

using Equations (4.32) and (4.33), FCM iteratively moves the cluster centers to the right

location within adata set. Thisiteration is based on minimizing Equation (4.31) that

represents the distance from any given data point to a cluster center weighted by a

membership grade of given data point. The pseudo-code used for the FCM algorithm is

in Figure 4.9
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Begin
> Choose the number of cluster c, the weighting exponent m,
and the termination tolerance &€ ;
Initialize cluster means v‘©;
Do
Calculate new partition U™ using Equation (4.32);
Compute new cluster means v’ using Equation (4.33);
Until (U U | <e
End

Figure 4.9 Algorithm for the FCM clustering

The membership weighting exponent m controls the relative weights placed on
each of the squared errors. As m becomes closer to 1, the solution of the FCM
procedure converges to hardness or crispness (i.e., the membership values become closer
to 1 or O, respectively), while the greater the value of m, the fuzzier the membership
assignments will be (i.e., the membership values for all clusters are close to each other).
The FCM literatures (Bezdek et a., 1984 and Cannon et al., 1986) suggested that, for
most data, the choice of m valueintheinterval [1.3, 3.0] give avalid clustering result.

The performance of the FCM algorithm depends on the selection of the number of
clusters and their initial values. If agood initial set of cluster centersthat are close to the
actual final cluster centers can be found, the FCM agorithm will converge very
constantly and the processing time can be drastically reduced. We find the number of

clusters and their initial values using the Gaussian mixture density estimation described
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in section 4.2 in such away that the results of the analysis with different numbers of

clusters are compared with each other.

4.5 Prior Probability Density Estimation

Image segmentation is an ill-posed problem (Bertero et al., 1988) that failsto
satisfy one or more of the following criteria: its solution (a) exits, (b) is unique, and (c)
depends on the initial data. Standard regularization techniques are normally used for
solving theill-posed problems (Poggio et al., 1985) and lead to satisfactory solutions of
image segmentation, but cannot deal effectively and directly with afew general
problems, such as discontinuities and fusion of information from multiple modules
(Marroquin et al., 1987). An aternative way for solving ill-posed problemsisto restrict
the class of admissible solutions by introducing suitable a prior knowledge in terms of an
appropriate probability distribution. The GRF model is appropriate for the prior
information in image segmentation because they can specify the local and global
properties of regions.

Let S={(i, j)|1<i, ] <m} bethe mxm squarelatticeand s=(i, j) beeach site

onthelattice S, then y={y,|se S and x={x,|se S} denote the observed image and

the corresponding labels of the observed image, respectively. A collection of subset of S

defined as n ={n, | se S,n, c S isaneighborhood system if and only if 7, the
neighborhoods of apixel s aresuchthat s¢ 7, and if s'e 77, then se 7, for any se S.
A neighborhood structure for 77?2, called the 2" order neighborhood system and its pair-
wise cliquetypes, B={4,, f,, 3, B,} are shown in Figure 4.10.
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Figure 4.10 77°- neighbor system and its pair-wise clique types

A random field x={x,|se S} isaGRF with respect to 7 if and only if its

configurations obey a Gibbs distribution. A Gibbs distribution takes the following form:

Pr(x) = %exp[—u (9] (4.34)

where

Z=>Y exp[-U(x)] (4.35)

xe X

isanormalizing constant called the partition function, and U (x) isthe energy function.

The energy function is given by:

U(x)=>V.( (4.36)
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isasum of clique potentials V_(x) over al possiblecliques C. Thevaue of V_(X)
depends on the local configuration on the clique ¢c. The most general form of energy
function U (x) based on a pair-wise clique potential function in Figure 4.9 is expressed in

the following expanded form:

U() =D V(xX)=) B5(xX) (4.37)

where ¢ represents a pair-site clique function, £ (> 0) isaset of pair-wise clique

potential parametersand d(a,b) isastep function defined as

o(a,b)=1 ifa=b
o(a,b)=0 otherwise

(4.38)

The choice of the coefficients £ of the function shown in Equation (4.37) isa
major topic in GRF modeling. When al the coefficients of the energy function are
defined, the model is completely specified. The GRF model for the prior distribution on
the observed image isin fact both homogeneous and isotropic in an appropriate sense,
even if thisis not the case for the posterior distribution (Geman and Geman, 1984).
When arandom model isisotropic (i.e., rotation invariant), the coefficients £ of the prior
energy function U (xX) may take the same values.

A GRF describes the global properties of animage (i.e., thelabel givento a
specific pixel is affected by the labels given to all other pixels) in terms of the joint
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distribution of classesfor al pixels. The practical value of the theorem isthat it provides
asimple way of specifying the joint probability. One can specify the joint probability
P(x) by specifying the clique potential functions V,(x) and chooses appropriate prior

information about interactions between labels.

4.6 Posterior Probability Density Estimation

Once the class-conditional energy function of the observed feature vectors y

given the labels x and the prior energy function of the labels x are modeled by means of
FCM and GRF, respectively, the current trend is to use the Bayesian formulation in
Equation (4.1) to construct either the posterior probability density or the posterior energy
function and then to perform labeling by maximizing this posterior probability density or
minimizing the posterior energy function by Equation (4.5).

The idea described in Section 4.5 is mainly designed to achieve a smooth
interpolation of the observed image. In practice, the patternsin an image are only piece-
wise continuous. In other words, discontinuities are naturally to be found within image.
In such cases, the use of a smooth interpolation operation may smear these discontinuities

(i.e., edges between different regions), causing over-smoothing.

4.7 Energy Minimization
Once the posterior energy and the associated parameters 4 have been
determined, the next step is to find the MAP estimate using Equation (4.5). The MAP

procedure for solving the labeling problem presents a considerable computational
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challenge. Marroquin et al. (1987) proposed a pixel labeling, but avoided the
computational difficultiesinherent in MAP estimation by introducing to minimize the
following segmentation error £. Let X be the true labeling, then alabeling X is sought

which minimizes:

2

e=— > [1-80¢ -%)] (4.39)

m ij=

=

which is the number of elements that are not classified correctly in the labeling X, since
o(a)=1if a=0 and 0 otherwise. The labeling that minimizes the segmentation error &
can be shown to maximize the marginal posterior distribution so that the label X, istaken

at pixel s to bethe onethat satisfies:

Pr(X1Ye) 2 Pr(x | y.), for all x, (4.40)

The point of departure of the MPM is the manner in which this marginal conditional
distribution is computed by counting the number of times each label is present at each

pixel in aseries of configurations. This approximation can be expressed by:

Prix, 1) == > 5(x,~9) (@4

where g represents the possible label belonging to label set.
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The parameters k and n are chosen heuristically; k isthe number of iterations
needed for the process to reach a steady state and n is selected for accurate estimation at
acceptable computational cost. For example, in the case of atwo-label segmentation, if
one choose k=20 and n=120, and if apixel x islabeled 1 on 20 occasions and labeled
2 on 60 occasions, then the probability Pr(x=1|y) will be 20/(120-20) =0.2, and
Pr(x=2]|y) will be 60/(120—20) =0.6. The pixel x will then be segmented as |abel 2
according to Equation (4.40). It isclear that the MPM algorithm requires more
computation than the iterated conditional modes algorithm, but is much less than that
required by the simulated annealing algorithm. The MPM agorithm isgiven in Figure

411

Begin
1. Setrecordinginterval k and n in Equation (4.41);
2. Initialize x by choosing x, asthelabel g that maximizes the conditional energy
in Equation (4.32);
3. For all pixels
I. Perturb x, by labels x.,s'e 7, that israndomly selected from the
labels in the neighborhood systemin Figure 4.10;
ii. Compute a energy difference A =U (x| X,)—U (X, | X,) interms of
Equation (4.32) and (4.37), respectively;,
iii. if A>O0, replace x; by x.;
iv. elseif exp(A) = random[0,1] , replace x, by X;
4. Repeat step 3 n times, and save configuration from x*** to x*;
For each pixel s, compute probability I5r(xS | y,) using Equation (4.41);
6. For each pixel s, choose X, according to Equation (4.40);

End

o

Figure 4.11 Maximizer of the posterior marginals segmentation algorithm
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The test images are the same as those described in Section 4.2 and 4.3. The
results of the MPM segmentation and their confusion matrices are shown in Figure 4.12
and Table 4.3, respectively. For the MPM algorithm, only pair-site neighborhood
systems (i.e., clique c=2) were considered, and the isotropic assumption (i.e., al g are
0.5) wasused. The MPM is better to the image corrupted with the Gaussian white noise
than the image corrupted with the multiplicative speckle noise. This means that the
characteristics of Gaussian white noise are much close to the characteristics of film-grain
noise in Equation (4.9) than the multiplicative speckle noise model. If the characteristics

of the noise model are correctly defined, the MPM will produce the better results.

Figure 4.12 Synthetic image (left), MPM segmented image from Gaussian white noise
(middle) and MPM segmented image from multiplicative speckle noise (right).
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#classes | 1 | 2 | 3 | 4 | User %
[Image corrupted with Gaussian white noise]
1 16359 0 20 0 99.88
2 9 16369 3 6 99.89
3 16 0 16359 0 99.90
4 0 15 2 16378 99.90
Producer % 99.85 99.91 99.85 99.96 65536
Accuracy 99.8916 Kappa 0.998556
[Image corrupted with multiplicative speckle noise]
1 16384 0 20 0 99.88
2 0 16382 0 127 99.23
3 0 2 16364 9 99.93
4 0 0 0 16248 100.00
Producer % 100.00 99.99 99.88 99.17 65536
Accuracy 99.7589 Kappa 0.996785

Table 4.3 Confusion matrices of two test images

4.8 Segmentation Post-processing

4.8.1 Connected Component L abeling

A segmented image often contains too many regions as aresult of either non-
optimal parameter setting or significantly complex scene (Figure 4.13). A simple post-
processing is based on visual interpretation and removes the small, isolated regions that
cannot be merged with any adjacent region according to the originally applied
segmentation algorithm. These small regions are usually not significant in further
processing and can be considered as segmentation noise (Figure 4.13 @). Theremoval

procedure of small regions implemented in this study is as follows:

1. Define Object and background regions aong the object boundary based on visual

interpretation of the segmented image (Figure 4.13 a).
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2. Replace the values of each region with either O or 1. — object regions to 1 and
othersto O (Figure 4.13 b).
3. Cadculate the size of each region in the binary image based on 8-connectivity and

select the maximum size O, of object regions and the maximum size B__, of

background regions.

4. Replace the value of object regions smaller than O, with the value of

background regions and vice versa (Figure 4.13 c).

1[3[3[3]3 of1]1]1]1 0[1 1 1 1
1/1/3[3]3 olof1]1]1 0 0]1 11
2[1]1]2]2 1/ojof1]1 0 0011
211124 1/o]of1]o0 0 0011
1]1[2]2]4] ofof1]1]o0 0 0[1 11
(@ (b) (©)

Figure 4.13 Segmentation post-processing: (a) segmented image with object pixels (2, 3
and 4) and background pixels (1 and 2), (b) merged (3 and 4), binary image and
(c) complete object and background image.

4.8.2 Boundary Extraction

An eight neighborhood scan of the segmented, binary image is used for locating
region boundaries. Each object pixel of the image is scanned by a 3x3 neighborhood
window, and then makes the center pixel as aboundary pixel if all pixelsin the window
are same. A pseudo-code for the algorithm and its example are in Figure 4.14 and Figure

4.15, respectively:
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Begin
input asegmented, black and whiteimage, g(i, j)
initializeaboundary map, f (i, j) =0
fori,j=1:N
if ((g@,])=1& &
9, )= 90 -1 j-Dllg(, ) =9 -1 )llad, j) =gl -1 j+ D)l
(i, j) =90, ] =Dligl, j)= 9, NIigl, j) =g, j+ Dl
9, )= 90 +1 j-Dllg, j) =9 +L )l j) # g +1, j +1))
fa,))=%
else
f(,))=0;
end

End

Figure 4.14 Boundary detection algorithm for a object-background image

@ (b)

Figure 4.15 Object boundary pixels (grey) detected based on e ght-connectivity (a) and
its vectorized boundary (b)
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The boundary pixels arein the form of arrays of square data units and may need
to be changed into lines for further analytical purposes. The spatial location of each
boundary pixel isimplicitly defined due to the pixel resolution. Lines connected by
boundary pixels are recognized as such, however, raster structures cannot identify the
correct shape of linear features. In contrast, vector structures are able to explicitly
identify the correct shape of linear features because these features are composed simply
as aseries of one or more coordinate points. As aresult, the spatial accuracy of vector
representations is better than raster representations. In this study, the center coordinates
of boundary pixels are calculated, and then simply connected together within the Arclnfo

GIS environment.

4.9 Summary

The development of image segmentation al gorithms based on an adaptive
Bayesian approach is the second theme of this dissertation. The adaptive Bayesian
framework to image segmentation developed in Chapter 4 relied upon the use of the prior
and conditional probability density functions. The Markov random field (MRF) model
was successfully replaced by the fuzzy c-means clustering (FCM) technique, which

avoids the difficulty in estimating the conditional probability Pr(y|Xx) of the observed
intensity values y given thelabels x. Initial values derived from the Gaussian mixture

model (GMM) made another contribution to the Bayesian framework, resulting in more
reliable results than randomly chosen initial values. A simple synthetic image has been

used for verifying the algorithm. Results have been presented that demonstrate the
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effectiveness of the algorithm in segmenting the synthetic image, resulting in more than
99.8% accuracy when noise characteristics are correctly modeled. The agorithms have
been implemented using the C-programming language.

The following chapter will provide a comparison of our algorithm and recently
devel oped coastline extraction algorithm (Liu and Jezek, 2003) and demonstrate the

application results on the Argon DISP image mosaic created in Chapter 3.
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CHAPTER 5

COASTLINE MAPPING OF ANTARCTICA

5.1 Introduction

The Antarctic coastlineis either rock or ice wall, or ice shelf terminus that is
adjoined by seaice covered or open ocean ice. Seaiceisany form of ice found at sea
which has originated from the freezing of seawater. Fast iceisseaicein asheet
permanently attached to the coastline and may extend afew meters or severa hundred
kilometers from the coastline. Although icebergs and ridges within fast ice can have high
relief, fast iceis generaly fairly flat.

In spite of their importance as a potential indicator of globa climate change, the
long-term behavior of the Antarctic coastline over continental scales waslargely
unknown. Recently, many Antarctic researchers have studied changesin the Antarctica
coast (Kim et al., 2001; Bindschadler and Rignot, 2001; Shepard et a., 2001; Rignot,
1998; and Vaughan and Doake, 1996), but their research was limited to a specific, local
sector of Antarctica. An historical image mosaic of the entire Antarctic coast (see Figure
3.9) created from the DISP data acquired during the early 1960s becomes a resource for

measuring the changes of the Antarctic coastline over continental scales.
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The purpose of this chapter isto extract the entire coastline of Antarctica using
the historical DISP image mosaic created in Chapter 3. Liu and Jezek (2003) presented a
local dynamic thresholding (LDT) approach to extracting the Antarctic coastline from
1997 SAR image data, in which ice margin mapping is relatively simple because the
glacier ice appears substantially brighter than either seasonal or fast ice. At the
processing stage, they used a Lee sigmafilter and anisotropic diffusion operator to
suppress the speckle noise and to enhance the coastline edges. At the segmentation stage,
alocally adaptive thresholding method is used to segment the SAR images into
homogeneous glacier and ocean water regions, in which the Levenberg-Marquardt
method is introduced to fit the bimodal Gaussian parameters and Canny edge detector is
used to refine the observed histogram and to estimate reliable initial valuesfor the
bimoda Gaussian parameters. They successfully created two complete coastline maps
(in 25-m and 100-m pixel resolutions) for the entire Antarctic coastal regions and
surrounding islands.

A trimodal scheme was introduced in an attempt to extend the technique the DISP
data, which were more difficult to interpret because there was very little contrast between
glacier ice and fast ice and there was substantially more fast ice cover in 1963 than in
1997. Thetrimodal shceme did not successfully segment the DISP data when even light
cloud cover was present (Figure 5.1) — possibly a problem associated with selecting
regions that have low contrast boundary between glacier ice and fast ice. A more
satisfactory segmentation resulting from the adaptive Bayesian approach developed in

Chapter 4 isshown in Figure 5.1 (c).
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Figure 5.1 Comparison of trimodal LDT and adaptive Bayesian segmentation applied to
DISP data: (a) origina image; (b) trimodal LDT segmentation; (c) adaptive
Bayesian segmentation; and (d) coastline extracted from (c).

In this study, the automated boundary detection software developed in Chapter 4
was applied to extract the entire coastline of Antarctica using the historical DISP image
mosaic. In practice, there are also some difficulties in the use of the image mosaic. One
of the mgjor difficultiesin trying to detect the Antarctic coastline is that more than 40%
of the image mosaic contains significant cloud cover, especialy in the west coastal areas
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of Antarctica. Another challenge isthat much of cloud-free coastal areas are adjoined to
fastice. Fasticeisusually reformed and thickened yearly, so fast iceis similar to glacier
icein terms of the visible characteristics. Because of these similar characteristics
between glacier and fast ice, it is not easy to differentiate the coastline from fast ice.
Figure 5.2 illustrates a true-color Moderate-resolution Imaging Spectroradiometer
(MODIS) image of the northwestern portion of the Ross Ice Shelf acquired on October
12, 2001. Theimageillustrates the difficulty in trying to differentiate the coastline from
fast ice. Just to the left of center in thisimage there are severa pieces of seaice
separating from the Ice Shelf. Beginning at the top of the image and running south are
the Prince Albert Mountains, which mark the coastline with the Ross Sea, the body of
water occupying the upper-right area of theimage. Everything east of those mountains

and south to Ross Island isfast ice. South and east of Ross Iland is the Ross |ce Shelf.
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Figure 5.2 True-color MODIS image displaying the northwestern portion of the Ross Ice
Shelf (Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team
at NASA GSFC at http://modis-land.gsfc.nasa.gov/)

To resolve some of these complexities, alternative criteriamust be used in place
of the automated boundary detection software. For example, if a sceneisvery complex
due to combination of seaice, fast ice, open water and glacier ice, then adaptive
histogram equalization (AHE) may help enhancing detailsin the scene. AHE enhanced
images may still not work with the boundary detection software because the AHE results
in blob-like textures. AHE partitions an imageinto Nx N subregions, and the histogram
for each region is calculated. The histogram is used to perform local image enhancement.

For processing the entire image mosaic, the mosaic was first partitioned into a

number of small image blocks (1024x1024) along the entire coast. Each small image
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block was then processed as described in Chapter 4. Five different examples of image
scenes, such as glacier and open water, light cloud cover, glacier and fast ice,

mountai nous coastline, and mixed classes, are discussed in this chapter. In this manner,
the entire coastline were extracted and assembled, and quality assessments of the

extracted coastline were performed.

5.2 Case Studies

5.2.1 Glacier and Open Water

The coastline of large ice shelves, such as Ross Ice Shelf and Ronne-Filchner Ice
Shelf, can be easily extracted by the automated boundary detection software, because the
scenes normally have a simple combination of glacier, open water, and light cloud.

Figure 5.3 shows the original image, ANF image, and corresponding histograms. The
original image displays a part of Ross Ice Shelf (177°07'E, 77°55'S) . It wasfiltered by
the ANF algorithm with parameters, D =3.3, o, =1and o, =0 described in Equation

(4.9). Comparison of the two histograms shows that the ANF image provides effective

noise suppression and retention of boundary sharpness.
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Figure 5.3 Original image (top), ANF image (bottom), and corresponding histograms

The original image clearly contains three different types of regions: glacier in
white, open water in black, and seaice and cloud in gray. So the number of classes was
set to k =3 for estimating the GMA of the ANF image. The estimated GMA and

histogram of the ANF image are compared in Figure 5.4 The histograms were
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normalized by the maximum bin number of each histogram, so that they can be easily

compared with each other.
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Figure 5.4 The GMA estimation (solid) and histogram (dashed) of the ANF image

Using the estimated GMA asiinitia values, the FCM was performed to compute
the class-conditional energy function. Asthe minimization of FCM object functions
shown in Figure 5.5, the minimization process with the GMA (solid) was almost flat and
the processing time was drastically reduced, compared with the process with random

initial values (dashed).
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Figure 5.5 FCM Convergence rates of the GMA (solid) and random initial values

After estimating the FCM, the MPM procedure illustrated in Figure 4.11 was
carried out with parameters, k =20 and n=200. The sequentia procedures for
extracting the coastline are shown in Figure 5.6. First, class 2 (gray) and 3 (white) were
merged as object regions, and the others were merged as background regions. Second,
background regions smaller than the maximum size (2) of background regions were
eliminated (Figure 5.6 (b)), and object regions smaller than the maximum size (1) of

object regions were eliminated (Figure 5.6 (c)). Figure 5.6 (d) shows the coastline

extracted from Figure 5.6 (c).
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Figure 5.6 MPM segmentation and boundary detection: (a) MPM segmentation with three
classes - glacier in white, cloudy glacier and seaice in gray, and open water in
black; (b) the binary image with a background region and al object regions; (c)
the binary image with a object region and a background region; and (d) the
original image overlaid with the boundary extracted from (c).

5.2.2 Light Cloud Cover

More than 40% of the image mosaic contains significant cloud cover, especially

in the western sector of Antarctica. An example of light cloud-covered areasis shownin
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Figure 5.7. The original image (top) displays a part of Jelbart Ice Shelf (556'W, 70°16’S)

and is completely covered by light cloud except the low-right corner. Asthe histogram
shows, the statistics of the original image are nearly unimodal in shape, but three or four
regions are recognized in the histogram of the ANF image (bottom), which was filtered
with parameters, D=3.3, 0, =1and o, =0.

In this case, two GMA estimations were carried out because the number of classes
isambiguous in the ANF image. The comparison between two GMA estimations and the
histogram of the ANF image (Figure 5.8) shows that the GMA with three classes (blue) is
systematically offset from the ANF histogram, but the GMA with four classes (black) is
much close to the ANF histogram except for avery small bump at the bottom. Based on
thisinterpretation, the FCM with four-class GMA was performed to compute the class-
conditional energy function. During the process, the FCM was converged smoothly and
the processing was terminated after 68 iterations. Figure 5.9 shows the comparison of the
convergence rates between GMA and random initial values.

After the FCM processing of the ANF image, the MPM procedure was carried out
with parameters, k =20and n=200. The sequentia procedures for extracting the
coastline are shown in Figure 5.10. First, class 3 (bright gray) and 4 (white) were merged
as object regions, and others were merged as background regions. Second, background
regions smaller than the maximum size (2) of background regions were eliminated
(Figure 5.10 (b)), and object regions smaller than the maximum size (1) of object regions
were eliminated (Figure 5.110 (c)). Figure 5.10 (d) shows the original image overlaid

with the boundary extracted from Figure 5.10 (c).
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Figure 5.8 Two GMA estimations (blue and black) and histogram of the ANF image
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Figure 5.9 FCM Convergence rate of the GMA (solid) and random initial values (dashed)
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Figure 5.10 MPM segmentation and boundary detection: (2) MPM segmentation with
four classes — cloudy glacier in white and bright gray, cloudy seaice in bright and
dark gray, and cloudy water in black; (b) the binary image with a background
region and all object regions; (c) the binary image with an object region and a
background region; and (d) the original image overlaid with the boundary
extracted from (c).
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5.2.3 Glacier and Fast Ice

Figure 5.11 (top) shows an example of the coastline obscured by fast ice, whichis

seaice attached to the coastline. Thisimage displays a part of Luitpold Coast
(32°27'W, 77°14'S) . The coastlinein theimageis vertically located between glacier and

fast ice. Because of more contrast between open water (dark) and fast ice than between
glacier and fast ice, it is more difficult for the MPM algorithm to differentiate the
coastline from fast ice. The histogram of the image (top) is a simple, bimodal
distribution. However, the histogram of the ANF image (bottom) shows that the imageis
likely to have four different classes (i.e., glacier, water, seaice, and fast ice) in the image.
The estimated GMA is shown in Figure 5.12.

Based on the estimated Gaussian mixture approximations (GMA), the FCM
computed the class-conditional energy function. Figure 5.13 shows that the initial values
obtained from the Gaussian mixture estimation made the FCM algorithm converged
smoothly and more rapidly than the random initial values. After the FCM process, the
MPM procedure was carried out with parametersof k=20 and n=200. The sequentia
results are shown in Figure 5.14. First, class 4 (white) was labeled as object regions, and
others were merged as background regions. Second, background regions smaller than the
maximum size of background regions were eliminated (Figure 5.14 (b)), and object
regions smaller than the maximum size of object regions were eliminated (Figure 5.14
(c)). Figure5.14 (d) showsthe original image overlaid with the boundary extracted from

Figure 5.14 (c).
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Figure 5.11 Origina image (top), ANF image (bottom) and corresponding histograms
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Figure 5.12 The GMA estimation (solid) and histogram of the ANF image (dashed)
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Figure 5.13 Convergence rates of the GMA (solid) and random initial values (dashed)
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Figure 5.14 MPM segmentation and boundary detection: (2) MPM segmentation with
four classes— glacier in white, fast icein bright gray, seaicein bright and dark
gray, and water in black; (b) the binary image with a background region and all
object regions; (c) the binary image with an object region and a background
region; and (d) the original image overlaid with the boundary extracted from (c).
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5.2.4 Mountainous Coastline
The original image in Figure 5.15 (top) displays the western part of the Antarctic
Peninsula(65°03W,66°16'S) . In thisimage, the Peninsulais completely covered by an

ice cap that drains over steep cliffs, giving origin to outlet glaciers extending onto the sea
and partly covered by mountain shadows (black). The ocean is completely filled with sea
ice. The ambiguous extremes of outlet glaciers and mountain shadows make it difficult
to recognize the correct positions of the coastline because the seaice is homogeneousy
gray. The histogram of the original image shows that it may consist of three different
classes such as seaice, glacier and mountain shadow. However, the histogram of the
ANF image (bottom) indicates that the glaciers may be divided into two different onesin
terms of gray levels (i.e., dark glacier and bright glacier). Based on thisinterpretation
about the number of classes, the GMA estimation (Figure 5.16) was performed to verify
the histogram interpretation. Using the estimated GMA as initial values, the FCM was
performed to compute the class-conditional energy function, and the processing
converged around 45 iterations (Figure 5.17).

After the FCM process, the MPM procedure was carried out with the same
parameters of kand n inthe previous case. The sequential results are shown in Figure
5.18. First, class 4 (white) was labeled as background regions, and others were merged
as object regions. Second, background regions smaller than the maximum size of
background regions were eliminated (Figure 5.18 (b)), and object regions smaller than the
maximum size of object regions were eliminated (Figure 5.18 (c)). Figure 5.18 (d) shows

the original image overlaid with the boundary extracted from Figure 5.18 (c).
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Figure 5.15 Original image (top), ANF image (bottom) and corresponding histograms
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Figure 5.16 The GMA estimation (solid) and histogram of ANF image (dashed)

x 10°
4

35¢F

N
[&;]
T

object function
N

15 ‘

0_ 5 L L L e
0 10 20 30 40 50 60 70
iterations

Figure 5.17 FCM convergence rate of the GMA (solid) and random initial values(dashed)
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Figure 5.18 MPM segmentation and boundary detection: (2) MPM segmentation with
four classes— bright glacier in black, mountain shadow in bright gray, dark
glacier in gray, and fast ice in white; (b) the binary image with a background
region and all object regions; (c) the binary image with an object region and a
background region; and (d) the original image overlaid with the boundary
extracted from (c).

Most of the coastline in this case was correctly extracted by the MPM algorithm,
but there are several misclassified areas due to non-optimal parameter settings during the

processing. Figure 5.19 shows an example of the misclassified areas where the coastline
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is located between the outlet glacier and the fast ice. For this case, a simple manual

editing is required

Figure 5.19 The misclassified area: automatically extracted coastline (red) and actual
coastline (blue)

5.2.5 Mixture Classes

Figure 5.20 (top) shows a complete mixture arealocated in Litzow-Holm Bay
(35°00'E,68'58'S) . The region around this bay is the most difficult to correctly segment

because of the combination of seaice, fast ice, icebergs, open water, ice tongues and
glacier. Although the ANF filtering slightly enhanced the detailsin the original image, as

seen in Figure 5.20 (bottom), any boundary features were not improved enough for

further processing.
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Figure 5.20 Original image (top), ANF image (bottom) and corresponding histograms

Two GMA estimations were then performed with three classes (black in Figure
5.21) and four classes (bluein Figure 5.21). In the case of three classes, the GMA was
very close to the ANF histogram, but the smallest distribution of the GMA (left hand
side) spread out widely. In the case of four classes, the GMA was totally offset from the

ANF histogram.
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Figure 5.21 Two GMA estimations (three classes in black and four classes in blue) and
ANF histogram (dashed)

Based on these two GMA estimations, the MPM & gorithm was performed with
both three- and four-class GMA estimations. The results are shown in Figure 5.22. Both
results are far from the truth. This may originally stem from blob-like features (i.e., small
icebergs and seaices) and very little contrast between glacier ice and other classes. The
small icebergs and seaice act as noise during the processing, whereas the segmentation

algorithm did not correctly recognize homogeneous regions in the scene.
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Figure 5.22 Three-class segmentation (left) and four-class segmentation (right)

In this case, manual digitizing was carried out based on intermediate image
processing and visual inspection. An adaptive histogram equalization (AHE) technique
was used as the intermediate image processing step during the manual delineation. It
partitionsan ANF imageinto Nx N subregions, and the histogram for each region is
calculated and used to perform local image enhancement. This technique is a useful tool
for enhancing the detailsin very low contrast images, but still will not work with the
boundary detection software because the AHE results in blob-like texture images. The
comparison of the global and local histogram equalization is shown in Figure 5.23 (a) and
(b).

Detailed enlargements of the fast ice-dominated AHE image were visually
inspected. Subtle curvilinear shadows were taken to be the coastline. During the manual

digitizing, characteristic features such as crevasses, rifts, and icebergs were used for

114



distinguishing continuous coastline from fast ice. Coastline derived from the manual

digitizing is shown in Figure 5.23 (c).

Figure 5.23 (a) Global histogram equalization, (b) adaptive histogram equalization, and
(c) coastline derived from manual digitizing based on (b).
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5.2.6 Antarctic Coastline

156 small image blocks (1024x1024) along the entire coast of Antarctica, except
Lassiter Coast (60°W -61'W ), Bryan and Eights Coast (100'W -144'W ), Alexander
Island (72°'W -85'W ), Syowa Prince Olav Coast (42’ E- 46" E), Mawson Coast (58 E -
62" E ), and Wilhelm Il Coast (85" E -90" E ) that are completely obscured by significant
cloud cover, were processed with the segmentation and boundary detection software and

mosaicked. Figure 5.24 shows the coastline automatically extracted through the manner

described in Section 5.2.1t05.2.4.

Figure 5.24 Coastline automatically detected from the DISP image mosaic of Antarctica
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5.2.7 Coastline Refinements

During the automatic, systematic processing of the DISP image mosaic for
Antarctica, the segmentation algorithm was occasionally confused by either non-optimal
parameter setting for an image (i.e., the number of classes) or mainly the lack of
consistent, sufficient contrast between glacier ice and other regions (Figure 5.15). Inthis
case, a coastline refinement processis required to find more correct positions of the
coastline. The AHE method described in Section 5.2.5 was incorporated for the
refinement process. Figure 5.25 shows an example of how the segmentation agorithm
could be confused between the actual coastline and the more distinctive boundary, which
separates open water (black) and seaice (gray). Figure5.25 (c) shows that the actual
position of the coastline (red) is placed inward from the detected boundary (blue). The
area between the actual coastline and detected boundary isfilled with fastice. To
correctly place the coastline, the AHE process was applied to the ANF image in Figure
5.25 (a). Theresulting AHE image in Figure 5.25 (b) helps human operators to find more
acorrect coastline over the image. Based on the AHE image, manual editing was carried
out in the same manner described in Section 5.2.5. It relied on feature characteristics
(i.e., crevasses, rifts and icebergs) and other historical coastline map, such as that was
published in Moscow by the Main Administration of Geodesy and Cartography, Ministry
of Geology USSR (Tolstikov, 1966). Figure5.25 (c) shows the automatically detected

boundary and manually edited coastline over the AHE image.
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Figure 5.25 Coastline refinements. (a8) ANF image; (b) AHE image; and (c) manually
edited coastline (red) in comparison with the automatically detected boundary
(blue).

Another example of alarger area aong the Saunders Coast (148'38W,7556'S) is
shown in Figure 5.26. Inthis case, large icebergs and seaice floes beyond the ice shelves
and ice caps are clearly seen in the AHE image (middle), and curvilinear shadows are
also distinguished from the ice shelves and ice caps. Based on this visual interpretation,

the correct positions of the coastline (red) were placed more landward from the
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automatically detected boundary (blue). The USSR coastlines are a'so much close to the

refined coastline than the automatically detected boundary.

50 km

Figure 5.26 Coastline refinements. (a8) ANF image; (b) AHE image; and (c) manually
edited coastline (red) in comparison of the automatically detected boundary (blue)
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There are some places, where it is almost impossible to correctly refine and place
the coastline even through use of the intermediate image processing. Figure 5.27 shows
such examples: (@) artificial straight-lines and (b) light blob-like clouds make the scene
dirty and confused. Although some boundaries were successfully detected by the
segmentation and boundary detection software, they are suspicious because (1) the
comparison of the 1956 (@) and 1958 (b) USSR maps and the 1997 SAR coastline (red)
shows that thisis amost stable over time and (2) although the accuracy of the Soviet map
may not be guaranteed, the difference between the automatically detected coastline (blue)
and the Soviet coastline is beyond the possible changes in the Antarctic coastline.
Consequently, the boundaries automatically detected from these cases cannot be

guaranteed.

Figure 5.27 (a) Automatically detected coastline (blue), 1997 SAR coastline (red), and
1956 Soviet map (right) in Shackleton Ice Shelf (103'57'E, 65°42'6S)
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Figure 5.27 (b) Automatically detected coastline (blue), 1997 SAR coastline (red), and
1958 Soviet map (right) in Mountains Pennell Coast (166°08' E, 70°35'6S)

In this manner, approximately 30% of the automatically detected coastline was
edited and replaced. The resulting coastline is shown in Figure 5.28. The automated
coastlinein Figure 5.24 isin blue, and the refined coastlineisin red. The coastlines
(green) around Shackleton Ice Shelf and Mountains Pennell Coast were the most difficult
to interpret because of artificial features and blob-like clouds; consequently, we have less

confidencein our results for these sectors.
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Figure 5.28 Automated coastline (blue) in Figure 5.24 and refined coastline (red) on the
DISP image mosaic: the uncertain coastlineisin green.

5.3 Accuracy Assessments

The quality of the coastline data must be known when analyzing changesin
comparison with other time seriesdata. Accuracy assessments were conducted by visual
checking after the coastline had been extracted from the DISP image mosai c of

Antarctica. The accuracy of the extracted coastline is influenced by the coastline
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extraction method and mainly by the geo-referencing accuracy of the source image;
consequently, we approximately estimated position errorsusing /o;” + 0, , where o, is
the positional accuracy of the DISP image mosaic and o, isthe error in identifying

coastlines on the DISP image mosaic. By comparing between the algorithm-derived
coastline and the coastline visually interpreted from the original images, we
approximately estimated the positional accuracy of the DISP image mosaic to be less
than 2 pixelsin 100-m pixel resolution (see Chapter 3) and the extracted coastline on the
DISP image mosaic to be less than 1 pixel, noting that the extracted coastline accuracy
may be larger than 3 pixels where light cloud cover exists. Based on these accuracies, we
estimated the overall accuracy of the extracted coastline to be between 200 to 500-m

except the uncertain regionsin Figure 5.28.

123



CHAPTER 6

CHANGE DETECTION OF THE ANTARCTIC COAST

IN A GEOGRAPHIC INFORMATION ENVIRONMENT

6.1 Introduction

Change detection of Antarctic coastlinesisatopic of great interest to glaciologists
and climatologists. Detecting changing Antarctic coastal environments by using
increasing amounts of time series data is done most efficiently in a geographic
information system (GIS) environment. The DISP image mosaic is useful for capturing
historic, geospatial information of the Antarctic coastline in 1963. Though aGIS, the
1963 data are integrated with earlier and later data to assess continental scale changesin
ice margin advance or retreat.

Time series data presented in this chapter quantify changesin the Antarctic
coastline using DISP, SCAR ADD, and SAR data. The SCAR ADD data are produced as
atopographic database compiled from avariety of Antarctic map and satellite image
sources originated between 1966 and 1991 for the entire Antarctic coast (ADD
Consortium, 2000). The SAR data are used to extract a complete, Antarctic coastline

from 1997 RADARSAT-1 SAR image mosaic (Liu and Jezek, 2003). Data sources and
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features obtained for the Antarctic coast are plotted along atimelinein Table 6.1.

Additional EOS data are also used in local studies of particular glaciers.

Data source Source date Source scale or resolution Features
Declassfied satellite 1963 100-m 33-um pixel Coastline
photographs
Abbot 1968 1:500,000
Amery 1971 1:1,000,000
Fimbul 1976/1983 1:1,000,000/6,000,000
Lazarev 1976 1:1,000,000
e N.Larsen 1978 1:250,000
frogrgap' Ragnhild A 1083 1:6,000,000 Coastline
Ragnhild B 1983 . 16,000,000 and
pho“;%aphs’ Ragnhild C 1983 | L1000,000 1:6,000,000 Grounding
LANDSAT Riiser Larsen 1988/1990 1:1,000,000 line
images Ronne-Filchner | 1978/1991 1:250,000/1,000,000
Ross 1983/1989 1:250,000/6,000,000
Shackleton 1969 1:1,000,000
S.Larsen 1978 1:250,000
West 1969 1:1,000,000
RADARSAT-1 SAR images 1997 25-m Coastline

* According to National Map Accuracy Standards (Light, 1993): 130-m positional accuracy of 1:250,000,
260-m for 1:500,000; 520-m for 1:1,000,000; and 3120-m for 1:6,000,000

Table 6.1 Cartographic source data used to analyze changes in the Antarctic coastline

6.2 Antarctic | ce Shelves

Figure 6.1 shows the major ice shelves selected for measuring changesin the

Antarctic coastline using the time series datain Table 6.1. Most Antarctic ice shelves

were included in thisanalysis. The Getz Ice Shelf (110°'W —150°'W) was excluded

because it is completely obscured by significant cloud cover on the DISP image mosaic.
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Figure 6.1 Major Antarctic ice shelves (red) used to measure changes in the Antarctic
coastline using time series data between 1963 and 1997

Combined areal extents of the ice shelves and ice rises were produced on the basis
of each coastline and the ADD grounding line positions. Table 6.2 show areas and
changesin area of each ice shelf between 1963 and 1997. Asdescribed in Chapter 5, we
have less confidence in our results for Shackleton Ice Shelf, so we removed this sector for
subsequent analysis of ice shelf change. Calculating the area of the ice shelves at each

time epoch, we find that the major Antarctic ice shelves covered approximately
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1,425,883 + 0.2~0.7 knm7* in 1963, 1,383,639 + 0.2~4.4 kn7 between 1968 and 1991, and
1,413,784 + 0.03 kn* in 1997. Net ice shelf areal changeisthus -42,243 + 0.2~3.1knY
(2.9% loss) between 1963 and ADD, 30,144 + 0.1~3.1 km? (2.1% gain) between ADD
and 1997, and 12,099 + 0.2~0.5 kn* (0.8% loss) between 1963 and 1997. It notes that
the ADD datais not synchronous at time (see Table 6.1). The more northerly ice shelves,
such as Abbot Ice Shelf, Northern Larsen Ice Shelf and ice shelves along Princess
Ragnhild Coast systematically retreated between 1963 and 1997. In contrast, Ronne-
Filchner 1ce Shelf not only systematically advanced, but also remained stable for three
decades. Amery Ice Shelf experienced with the greatest fluctuations by retreating from

1963-1971 and advancing from 1971-1997.
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Ice Shelf DISP ADD SAR
Abbot 47137.4 46165.2 45978.9
Amery 51433.5 44129.8 47660.5
Fimbul 68562.8 62628.4 62824.9
Lazarev 2359.9 2583.1 2401.8

N. Larsen 15963.4 15223.7 10720.0

Ragnhild A 7691.2 7557.9 7379.7
Ragnhild B 31045.0 30433.1 31574.8
Ragnhild C 37540.1 34030.7 33642.3
Riiser Larsen 83081.3 75940.5 78992.0
Ronne-Filchner 491150.8 493213.9 500692.6
Ross 498019.4 489987.5 509435.0
Shackleton 71669.9 37530.5 35441.5
S. Larsen 83939.3 73037.9 73964.1
West 7959.1 8707.7 8517.6
Total 1497553.7 | 1421170.3 | 1449226.4
Tota
(excent Shackleton) 1425883.2 | 1383639.4 | 1413784.2

(@) Ice shelf areas measured from DISP, ADD, and SAR

Ice Shelf DISP-ADD (%) ADD-SAR (%) DISP-SAR (%)
Abbot 9721 | R 2.0 186.3 | R 0.4 11585 | R 24
Amery 73036 | R 14.2 3530.6 | A 8.0 37729 | R 7.3
Fimbul 59344 | R 8.6 1965 | A 0.3 57378 | R 8.3
Lazarev 2231 | A 9.4 1812 | R 7.0 418 | A 17

N. Larsen 7396 | R 4.6 45036 | R 29.5 52433 | R 32.8

Ragnhild_ A 1333 | R 17 1781 | R 2.3 3115 | R 4.0
Ragnhild B 6119 | R 1.9 11417 | A 3.7 52908 | A 17
Ragnhild C 35093 | R 9.3 3884 | R 11 38978 | R 10.3
Riiser Larsen 71408 | R 8.5 30515 | A 4.0 4089.3 | R 49
Ronne-Filchner 2063.0 | A 0.4 74786 | A 15 95417 | A 19
Ross 80319 | R 1.6 194475 | A 3.9 114156 | A 2.2
Shackleton 341393 | R 47.6 20890 | R 5.5 362283 | R 50.5

S. Larsen 10901.3 | R 12.9 926.2 | A 1.2 9975.1 | R 11.8
West 7485 | R 9.4 1900 | R 21 558.4 | R 7.0
Total 76383.4 | R 5.1 28056.0 | A 1.9 483273 | R 3.2
Total

(excent Shackleton) 422438 | R 29 301448 | A 21 120990 | R 0.8

(b) Changes in reference to 1947

R Retreat of theice shelf
A Advance of the ice shelf

Table 6.2 Advance and retreat of major Antarctic ice shelves (in km?®) between 1963 and
1997
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Figure 6.2 illustrates coastline positions between 1963 and 1997. Grounding line
positions are not changed on this period. Regions of coastline retreat are shown in red
and regions of advance are shown in blue. Asdemonstrated in Table 6.2, the more
northerly ice shelves and large ice tongues retreated the most. To address partly the
guestion of whether this observed pattern of advance and retreat are episodic or
systematic, several comparisons were carried out. Figure 6.3 and Figure 6.4 show retreat
and advance between DISP and ADD and between ADD and SAR coastlines,

respectively.
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Figure 6.2 Antarctic ice shelf advance and retreat between 1963 and 1997
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Two facts are revealed by these comparisons. First, ice shelvesretreated mostly
between DISP and ADD time periods. Second, while Ronne-Filchner Ice Shelf showed a
consistent trend between three observations of DISP, ADD, and SAR, Ross Ice Shelf

advanced mostly between ADD and SAR time periods.

6.3 Glaciers

Pine Island Glacier was selected for a detailed, local study of ice margin
fluctuations. Thisglacier isone of the largest glaciersin West Antarctica. The glacier
speed increased by 18 + 2 % between 1992 and 2000 (Rignot et a., 2002), and the basin
feeding the glacier thinned at 11.7 £ 1.0 cm/yr between 1992 and 1996 (Wingham, 1998).
The thinning rate near the grounding line was estimated at 1.6 + 0.2 m/yr between 1992
and 1999 (Shepherd et a., 2001). Thisregion is believed to be susceptible to ice sheet
collapse (Bentley, 1997; Bindschadler, 1997), and therefore the evolution of this glacier
isof great interest to scientific community.

DISP, SAR (Jezek, 1999 and 2003), and ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer: Abrams and Hook, 2002) data from October 1963,
December 1975, September 1997, September 2000 and December 2003 were used in this
study. All datawere processed in same manner asthe Argon DISP data. Results shown
in Figure 6.5 are more accurate than Argon-derived results because the source data have
better resolution, ranging from 15 to 25-m. Four estimates of the Pine Island Glacier
terminus and adjacent coastal regions were overlaid on the 1963 DISP image and its

coastlinein black (€). They consisted of coastline positions estimated from 1963 DISP,
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1975 DISP (25-m resolution), 1997 and 2000 RADARSAT-1 SAR (25-m resolution),

and 2003 ASTER data (15-m resolution).

Figure 6.5 Observations of coastline positions of Pine Island Glacier from: (a) 1975 DISP
image (b) 1997 RADARSAT-1 SAR image; (c) 2000 RADARSAT-1 SAR image;
(d) 2003 ASTER image; and (e) 1963 DISP image.

133



Glacier terminus position does not change smoothly with time. Rather periods of
advance are punctuated by calving events which result in abrupt retreat. Consequently,
one must carefully compare images captured at about the same phase of thiscyclein
order to reliably estimate aretreat and advance rate of the glacier terminus position. For
example, an advance rate of approximately 125 m/yr is estimated when measuring from
1947 margin position to 2000 pre-calving margin position, while aretreat rate of
approximately 76 m/yr when measuring from 1947 margin position to 2003 post-calving
margin position. To avoid thisbiasin the data, it is necessary to have sufficient data

available to reliably estimate along-term trend of the glacier terminus position.

Rignot’ s observations derived from aerial and satellite imagery between 1947 and
2000 (Rignot, 2002) and the SCAR ADD data were added to our estimates. All
data sources used for this interpretation, acquisition dates, and accuracies are
plotted along atimelinein

Table 6.3.

Data source Source date Accuracy (m)
Cartographic map 1947 1000-2000*
DISP 09/1963 200
Aeria photography 01/1966 500*
ADD 1968 260**
LANDSAT MSS 01/1973 100*
DISP 12/1975 25
AVHRR 01/1980 1000*
ERS-1 1992 50*
ERS-1 11/1995 50*
ERS-1 01/1996 50*
RADARSAT-1 09/1997 25
ERS-1 05/2000 50*
RADARSAT-1 09/2000 25
ASTER 12/2003 15

Table 6.3 Information of source datafor Pine Island Glacier (* from Rignot (2002) and
** from ADD Consortium, 2000)
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Rignot’s map (Figure 6.6) was scanned using a portable scanner at a resolution of
600 dots per inch (dpi). A linear transformation (e.g., affine transformation) function was
used to georeference the scanned map using 12 well-distributed longitude-latitude points

in the map, and then our five estimatesin Figure 6.5 were overlaid on the georeferenced

map.

Figure 6.6 Fourteen glacier terminus positions of Pine Island Glacier between 1947 and
2003 (Rignot, 2002): September 1963 (bright green), 1968 (bright yellow),
December 1975 (white), September 1997 (red), November 2000 (yellow), and
September 2003 (black) ice front margins are added on Rignot’s map (2002)
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The glacier terminus positions were measured along the line AB in Figure 6.6,

and changes in the positions were calculated in reference to 1947 (Table 6.4). Over these

56-years of observations, we found that ice terminus positions along the line AB have
oscillated between -4.6-km and 6.6-km in reference to 1947 mainly due to large calving
events occurred between 1947 and 2003, and the glacier has calved with approximately 4
to18-km of the glacier length in direction of the glacier velocity. In addition, the glacier
terminus position was at its most advanced stage in the RADARSAT-1 SAR image of
September, 2000 before a 18-km iceberg calved in November, 2001

(http://photojournal.jpl.nasa.gov/catal og/PIA03431) and was at its most retreated stage in

the SCAR ADD data of 1968 after the similar size of iceberg calved between 1966 and

1968.

Y ear X-position (m) | y-position(m) | Change (m)
1947 -1616894 -331511 | Reference
09/1963 -1618467 -336506 5236.862
01/1966 -1618497 -336588 5324.052

1968 -1615501 -327108 -4618.101
01/1973 -1615642 -327538 -4165.601
12/1975 -1616827 -331292 -229.019
01/1980 -1616861 -331429 -88.391

1992 -1615561 -327307 -4410.272
11/1995 -1616951 -331714 210.850
01/1996 -1615626 -327515 -4192.354
09/1997 -1616905 -331571 61.000
05/2000 -1618559 -336847 5589.733
09/2000 -1618876 -337853 6644.493
12/2003 -1615600 -327417 -4293.631

Table 6.4 Pine Island Glacier terminus changes along the line AB in Figure 6.4
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Figure 6.7 shows changes in the glacier terminus position of the Pine Island
Glacier between 1947 and present. Using aweighted, linear least-squares adjustment in
Equation (3.11), aretreat rate of the glacier terminus position was estimated of
approximately 10 + 65 m/yr. Each terminus change was calculated in reference to the

1947 terminus position, and its error was then inversely weighted during the linear least-
squares adjustment. For example, an error of /07,45 + 0714 Was estimated for the

change between 1963 and 1975 and then inversely weighted during the linear |east-

sguares adjustment.
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Figure 6.7 An estimated retreat rate of the Pine Island Glacier terminus position
between1947 and present: the trend was cal culated using an weighted, linear
|east-squares adjustment; and down arrows ({) indicate the calving events
observed between 1966 and 1968, in January 1995 (Rignot, 2002), and in
November 2003 (http://photojournal.jpl.nasa.gov/catal og/PIA03431)

The glacier terminus position of the Pine Island Glacier has changed with a retreat
rate of approximately -10 £ 65 m/yr from 1947 to present. This numerically supports
previous results (Lucchitta et al., 1995; Jenkins et a., 1997; Rignot, 1998; Bindschadler
and Rignot, 2001; Vaughan et al., 2001; and Reginot, 2002), which suggested that there
was no discernible change in the mean position of the glacier terminus over the last three

or four decades.
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A glacier terminus position is approximately determined on a balance between the
glacier velocity and calving rate at the glacier terminus position. This can be expressed
as M =V -C,where M istheretreat or advancerateand V and C are the velocity and
calving rate, respectively. Using aretreat rate of -10 + 65 m/yr and aflow speed of 2.5 +
0.4 km/yr at the terminus (Crabtree and Doake, 1982; Lucchitta et al., 1995; and Rignot,
1998) between 1973 and 1996, the calving rate of approximately 2.51 + 0.4 km/yr was
obtained.

We note that ice shelves in Antarctica catastrophically retreat (e.g., Larsen Ice
Shelf in Figure 6.2). That is, ice shelves, which appear to have stable terminus positions,
can disintegrate over a period of daysto weeks. While other scientists have observed
large changes in thinning rate, increasing velocity, and retreating grounding line of the
Pine Island Glacier, we observed little change in the glacier terminus positions. This
leads us to speculate that the glacier terminus change is not always a good indicator of the
glacier health. Moreover we cannot explain how the calving rate of the Pine Island
Glacier can change amost synchronously with the glacier velocity, so that the change of

the glacier terminus position is small.
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CHAPTER 7

CONCLUSION

The individual DISP photographs are important resources for measuring the
geometry of the coastline of Antarctica. By using the state-of-art digitizing technology,
bundle block triangulation based on tie points and control points derived from the
RADARSAT-1 SAR image mosaic, and OSU Antarctic DEM, we accurately assembled
the individual images into a map quality mosaic of Antarcticaas it appeared in 1963.
The positional accuracy depends upon the quality of source data used for orthorectifying
the DISP photographs and the number and distribution of tie and control points selected
from the source data. The standard deviation of the resulting image block was within
two-pixel accuracy (200-m). This satisfied our mapping requirement on detecting
Antarctic coastal change. The new map is another important benchmark for gauging the
response of the Antarctic coastline to changing climate.

The development of image segmentation al gorithms based on an adaptive
Bayesian approach is the second theme of this dissertation. The adaptive Bayesian
framework to image segmentation developed in Chapter 4 relied upon the use of the prior
and conditional probability density functions. The Markov random field (MRF) model

was successfully replaced by the fuzzy c-means clustering (FCM) technique, which
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avoids the difficulty in estimating the conditional probability Pr(y|x) of the observed
intensity values y given thelabels x. Initial values derived from the Gaussian mixture
model (GMM) made another contribution to the Bayesian framework, resulting in more
reliable results than randomly chosen initial values. A simple synthetic image has been
used for verifying the algorithm. Results have been presented that demonstrate the
effectiveness of the algorithm in segmenting the synthetic image, resulting in more than
99.8% accuracy when noise characteristics are correctly modeled.

The third theme of this dissertation is to automatically extract the entire coastline
from the 1963 DISP image mosaic created in Chapter 3, so that the derived, historical
coastline can be compared with other time series data over continental scales. Automated
coastline extraction software developed in Chapter 4 was applied to the entire DISP
image mosaic, but more than 40 % significant cloud cover and very low contrast of the
historical imagery made it difficult to correctly extract the coastline everywhere. In these
cases, manual editing was carried out based on intermediate image processing and visual
inspection. The quality of the extracted coastline must be known when analyzing
changes in comparison with other time series data. By visua checking the source image,
the accuracy of the extracted coastline was estimated to be less than one pixel, noting that
the extracted coastline accuracy may be larger than three pixels where light cloud cover
exists. The accuracy of the extracted coastline is also influenced by the geo-referencing
accuracy of the source image; consequently we estimated the overall accuracy to be
approximately 200 to 500-m using the error propagation raw.

Through a geographic information system (GIS), the derived, refined 1963 DISP

data were integrated with earlier and later data to assess continental scale changesinice
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margin advance or retreat. Calculating the area of the mgjor Antarctic ice shelves
between 1963 and 1997, we found that net 1oss was approximately 0.8 % and that ice
shelves retreated mostly between DISP and ADD. In addition, over the 56-years
observations on Pine Island Glacier, we found that the retreat rate since 1947 has been
approximately -10 = 65 m/yr. We also note that ice shelvesin the Antarctica
catastrophically retreated. While other scientists have observed large changes in thinning
rate, increasing velocity, and retreating grounding line of the Pine Island Glacier, we
observed little change in the glacier terminus positions. This leads us to specul ate that
the glacier terminus change is not always a good indicator of the glacier health.
Moreover we cannot explain how the calving rate of the Pine Island Glacier can change
almost synchronously with the glacier velocity, so that the change of the glacier terminus

position issmall.
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APPENDIX A

GROUND CONTROL POINTSOF ANTARCTICA

Table A showsthe x and y coordinates of the entire ground control points
(GCP), which were depicted in Figure 3.10, selected from 1997 RADARSAT-1 SAR
image mosaic (100-m pixel resolution), and used for bundle block triangulationsin

Chapter 3. The coordinates are in apolar stereographic projection with a standard

paralel of 71° S onthe WGS 84 ellipsoid.

GCPs X (meters) y (meters)
001 891012.5 1786362.5
002 965537.5 1919387.5
003 1006275.0 1651925
004 675612.5 1830637.5
005 802612.5 2015162.5
006 -9362.5 1964237.5
007 236212.5 1977637.5
008 435137.5 2039737.5
009 446125.0 1951875
010 279137.5 2161812.5
011 214962.5 2159762.5
012 401925.0 2156325
013 7147125 2047712.5
014 825306.25 1785706.2
015 489837.5 2134337.5
016 432662.5 1919112.5
Continued
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017 503675.0 1905825.0
018 337425.0 1946525.0
019 675637.5 1830712.5
020 594725.0 2131675.0
021 1413762.5 1724362.5
022 1516237.5 1778312.5
023 1813812.5 1599712.5
024 1829262.5 1691537.5
025 18241125 1697087.5
026 1372212.5 1740787.5
027 1291212.5 1956212.5
028 970137.5 1960212.5
029 2294125.0 859525.0
030 2376050.0 430950.0
031 2185562.5 987512.5
032 1811062.5 482187.5
033 1960637.5 907087.5
034 1811362.5 779712.5
035 1581671.1 877022.5
036 2331862.5 -1107787.5
037 2069412.5 -1545287.5
038 2156487.5 -1342962.5
039 2230475.0 -1176475.0
040 2397875.0 -825425.0
041 2490737.5 -741412.5
042 2354800.0 -1079300.0
043 14778375 -2055212.5
044 1695362.5 -1946687.5
045 1311337.5 -2006712.5
046 1002525.0 -2122125.0
047 963409.8 -2097500.2
048 850987.5 -2084537.5
049 11907125 -2049787.5
050 1190712.5 -2049787.5
051 17134125 -1936337.5
052 1879475.0 -1824475.0
053 1921837.5 -1791937.5
054 1056992.2 -2139769.2
055 965278.5 -2104638.4
056 844012.5 -2118762.5
057 1160212.5 -2076412.5
058 1348801.7 -2039833.4
059 1190512.5 -2050937.5
Continued
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060 1039025.0 -2084925.0
061 597137.5 -2017862.5
062 381712.5 -2005212.5
063 559175 -1847575.0
064 397062.5 -1803562.5
065 516166.7 -1485921.8
066 4242125 -1797962.5
067 495875.0 -1648425.0
068 359387.5 -1994487.5
069 570475.0 -1453025.0
070 472587.5 -1319912.5
071 471025.0 -1079275.0
072 303175.0 -1289825.0
073 344225.0 -736325.0
074 153825.0 -718275.0
075 316237.5 -905412.5
076 4322755 -962056.9
077 450325.0 -1168025.0
079 288063.7 -1267041.3
080 256175.0 -1344875.0
081 -77937.5 -783937.5
082 276275.0 -764225.0
083 157825.0 -747075.0
084 207750.0 -790375.0
085 273800.0 -663100.0
086 24837.5 -468412.5
087 204112.5 -588637.0
088 352212.5 -780262.5
089 -337762.5 -370312.5
090 -516587.5 -253337.5
091 -452175 -142175.0
092 -109162.5 -351737.5
093 -102350.0 -535400.0
094 -210587.5 -422787.5
095 -77962.5 -783937.5
096 43637.5 -455312.5
097 -375487.5 -278437.5
098 -101871.6 -768877.1
099 164412.5 -645412.5
100 -289525.0 -678475.0
101 -90362.5 -568862.5
102 -810461.7 -1095005.4
103 -614182.3 -1232421.6
Continued
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104 -880984.0 -1311240.7
105 -692839.9 -1122133.6
106 -799743.7 -1251307.2
107 -323127.1 -1156259.1
108 -394293.5 -1035407.9
109 -305625.0 -506925.0
110 -289675.0 -678475.0
111 -433500.0 -862400.0
112 -223487.5 2136587.5
113 -115300.0 1888700.0
114 -438387.5 1785087.5
115 -6287.5 1959462.5
116 97962.5 1984487.5
117 -103087.5 2146012.0
118 96300.0 2133400.0
119 -704973.5 1323109.1
120 -736461.1 1226877.5
121 -766086.1 1082102.5
122 -552961.1 353527.5
123 -542636.1 611627.5
124 -221448.6 563140.1
125 -500161.1 918952.5
126 -568036.1 1037527.5
127 -732836.1 1250752.5
128 -767961.1 1115302.5
129 -966986.1 915377.5
130 -464950.0 970350.0
131 -800387.5 850387.5
132 -548123.6 1093215.0
133 -929225.0 463425.0
134 -809300.0 582700.0
135 -661800.0 569300.0
136 -618625.0 430225.0
137 -482860.0 228096.0
138 -542333.0 611623.0
139 -532314.0 376865.0
140 -442127.0 173315.0
141 -1435162.5 552787.5
142 -1460837.5 689262.5
143 -1410112.5 520537.5
144 -1340775.0 218725.0
145 -1138125.0 409475.0
146 -855825.0 634475.0
Continued
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147 -1004575.0 861125.0
148 -793075.0 597275.0
149 -908275.0 437125.0
150 -929225.0 463425.0
151 -809300.0 582700.0
152 -661800.0 569300.0
153 -661800.0 569300.0
154 -618625.0 430225.0
155 -482860.0 228096.0
156 -542333.0 611623.0
157 -532314.0 376865.0
158 -442127.0 173315.0
159 -855825.0 634475.0
160 -1004575.0 861125.0
161 -793075.0 597275.0
162 -908275.0 437125.0
163 -1432007.0 559548.0
164 -1470270.0 688593.0
165 -1138125.0 409475.0
166 -1340775.0 218725.0
167 -2432022.9 1694241.5
168 -2382427.7 1530406.2
169 -2497046.4 1498500.0
170 -2493346.4 1598800.0
171 -1757722.9 960516.5
172 -1578627.7 861193.7
173 -1665346.4 931125.0
174 -1563996.4 796400.0
175 -1522479.1 793935.2
176 -1006921.4 870175.0
177 -2499512.5 1478012.5
178 -2199193.7 1010793.7
179 -2427262.5 1086062.5
180 -2406387.5 13017375
181 -2306787.5 1303412.5
182 -2374887.5 976787.5
183 -2423112.5 1088612.5
184 -2319362.5 1177987.5
185 -2278512.5 894587.5
186 -2176787.5 780912.5
187 -1828387.5 982037.5
188 -2031860.4 1011229.0
189 -2191212.5 759737.5
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190 -2205912.5 936462.5
191 -1970462.5 823312.5
192 -1892237.5 659462.5
193 -1745612.5 569537.5
194 1174685.3 1641189.5
195 1371606.7 1753607.2
196 1281865.7 1961027.1
197 980281.1 1951118.0
198 928068.4 17587454
199 2171001.6 1532398.4
200 -1970592.3 243525.3
201 -1909777.5 -96701.0
202 -1939790.0 -41730.8
203 -1869971.5 120336.6
204 -1970258.5 -244046.4
205 -1955321.5 -197051.5
206 -1967959.2 -276631.9
207 -1949876.3 -365401.2
208 -1630440.5 -280507.9
209 -1573509.1 -585690.9
210 -1392275.6 -667158.4
211 -1748167.3 -402824.7
212 -1751911.8 -352963.1
213 -1588779.1 -349367.0
214 -1783386.5 -462213.8
215 -1509801.3 -637069.5
216 -328175.1 1623419.7
217 -631620.2 1641827.1
218 -315636.0 1648848.9
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APPENDIX B
PARTIAL DERIVATIVESOF COLLINEARITY EQUATIONS

The collinearity equations in Equation (3.5) can be rewritten by:

N
X=—f EX: f(XC,YC,ZC,a),qo,K,Xp,Yp,Zp)

N
y=-f 3y= f(XerYer Ze, 0,0, 5, X,,Y,,Z)
where,

N, = 11(XP = Xo)+ rZI(Yp -Yo)+ r31(ZD -Z,)
N, =1, (X, =X )+, (Y, =Y) +1,5(Z, - Z,)
D =1 (X, =X,)+r5(Y, =Y) +15(Z,-Z))

The partial derivativesof x and y with respect to the unknown parameters are then as

follows;
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oX f ay f
a_XC:_F(rlsNx_rnD) X D (r13N D)
oX f ay f
a_Y:_E(rzsNx_rle) a_Y:_F(rZSNy_rZZD)
oX f ay f
i:_E(rssNx_rle) a?:_E(r%Ny_rBZD)
ox f N,
e (A ICR AT SRR ALY
o) f N,
ﬁ D{[w Y= (2, =2 | (Y, Y1 +(Z, Z)rzz}

{[NX cosk—N, sink | N, }

D

f . N .

{ NXCOSK—NySH']K'}—y+DS|nK}
E)go D D
x__fy _fy
ok D 7 ok D
oX f oy f
an:F(rlsNx_rnD) 87 F(rBN 12D)
ox f gy f
a_Yp:F(rzsNx_rﬂD) a_Yp F(rzsN D)
ox f ady f
a_zp:F(rssNx_rle) a_Zp:F(rssNy_rszD)

Using these partial derivatives, Equations (3.5) can be expressed as the linearized

observation equations for the least squares adjustment.
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(%, Y) are the observed image coordinates,

Xo — f(XCO,YCO,ZCO,a)O,¢O,KO,XpO,YpO,ZpO)
yO — f(XCO’YCO’ZCO’a)O’wo’K.O’ XpO’YpO’ZDO)

dX, = (X, - X), etc.
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