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Abstract. In this paper, we propose a new method for detecting outliers in an
irregularly distributed spatial data set. Our method has two desirable properties.
First, it is functionally eŒective due to the introduction of sensitive outlier indices
and locally adaptive and robust statistical criteria. Second, it is computationally
e� cient because of the use of super-block based spatial data sorting and searching
scheme. Our method has been implemented using the C programming language
and integrated with the Arc/Info GIS system. The integration leads to a powerful
exploratory data analysis tool for checking and analysing anomalous values in a
GIS environment. Local outliers can be automatically labeled with our method,
subject to some user-de� ned parameters. Outliers represent anomalous or suspi-
cious values in a statistical sense, which may not necessarily be erroneous values.
Instead of being simply discarded, statistical outliers should be investigated further
using prior qualitative knowledge or in association with other GIS data layers.

1. Introduction
With the rapid development of geographical information system (GIS) techno-

logy, various spatial databases have been constructed in recent decades in support
of a wide range of geo-scienti� c and environmental studies. However, errors may
arise during the data acquisition process due for a variety of reasons, such as
malfunction or improper calibration of instruments, mistaken readings, gross record-
ing, and calculation and execution faults. The existence of erroneous values plagues
subsequent spatial data analyses and often distorts the inference process. To ensure
the quality of spatial databases and prevent error propagation, it is critical to develop
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error detection and correction techniques (Chrisman 1991, Lunetta et al. 1991, Lanter
and Veregin 1992, Thapa and Bosseler 1992).

Previously, formal statistical methods have been developed to deal with outliers
in the context of non-spatial data (Tietjen and Moore 1972, Barnett 1983, Iglewicz
and Hoaglin 1993, Barnett and Lewis 1994, Luceño 1998). Also, some techniques
have been proposed to detect errors in grid-based spatial data sets. Hannah (1981)
developed an algorithm for error detection in a digital elevation model (DEM). He
used the constraints on both the slope and the change in slope within a local area.
Felic´simo (1994) advanced a parametric statistical method for detecting anomalous
values in grid-based data sets. His method is based on the comparison of the
observation value at each grid node with the value interpolated from its neighbouring
grid nodes. López (1997) used principal component analysis to deal with random
errors in digital elevation models. However, little research has been reported on
error detection techniques for irregularly distributed spatial data.

In reality observations and measurements of geographical phenomena frequently
occur unevenly and irregularly over space. Moreover, many regular spatial data sets
are originally interpolated from irregular data sets, namely, scattered and/or traverse
type of measurements. Due to a lack of eŒective automatic methods, some informal
procedures are often used in practice for checking and editing irregularly distributed
data sets. One intuitive procedure is visual inspection of point values portion by
portion in hardcopy printouts or on computer screen. This procedure is prohibitively
time consuming and tedious for a large and dense data set. Moreover, it is often
di� cult to detect outliers through visual inspection without the aid of analytical
tools. The other procedure often used is to interpolate an irregularly distributed data
set into a regular grid, and then to apply error detection techniques designed for
grid-based data, for example, analytical hill-shading methods (Kraus 1994) and the
methods developed by Hannah (1981) and Felic´simo (1994). This indirect procedure
has two major drawbacks. First, when an irregularly distributed data set is inter-
polated into a regular grid, errors propagate and spread out into their neighbour-
hoods. Furthermore, outliers may already be suppressed in the interpolation process.
This makes subsequent error detection and removal very di� cult or impossible.
Second, even if errors are identi� ed in the interpolated regular data set, they have
to be traced back to the original irregular data set. Interpolation and backward
error-tracing certainly need additional eŒorts.

In this paper, we present an automatic outlier detection method designed for
irregularly distributed data sets. By combining a super-block based searching strategy
and locally adaptive and robust statistical analysis, our method provides a strong
capability for detecting local outliers at a minimized computational cost. The pro-
posed approach has been implemented using C programming and integrated with
the ARC/INFO GIS. By specifying a desired degree of con� dence and some other
parameters, outliers can be automatically labelled within a massive irregularly distrib-
uted data set. The speci� cation of these parameters involves user’s subjective judg-
ment. Outliers are anomalous or suspicious values in a statistical sense; that is, they
are strongly inconsistent with their neighbour points and deviate markedly from a
statistical model based on other nearby values. It should be noted that statistical
outliers are not necessarily erroneous data though they are highly likely to be so.
Instead of being simply discarded, statistical outliers should be further investigated
using prior qualitative knowledge or in association with other geographical data
sets. The justi� ed errors can then be eliminated, remeasured, or replaced by the
interpolated value, depending on the actual application context.
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In the following sections, we � rst outline basic assumptions underlying our
method, and then examine the algorithms involved in our method. Afterwards, we
illustrate how to verify and analyse the detected anomalous values in a GIS environ-
ment. This is followed by an application example. In the � nal section we present
conclusions.

2. Basic assumptions
In this paper, we assume that irregularly distributed spatial data under investi-

gation are observations or measurements on a spatially continuous geospatial vari-
able, such as topographical elevation, geomagnetic � eld, gravitational potential,
atmospheric temperature and pressure, salinity of ocean water, or soil acidity. These
types of geospatial variables exhibit gradual and continuous variation over space,
and can be graphically represented as the shape of a surface. Consequently, spatial
data sampled on continuous geographical phenomena are often referred to as surface-
type data (Robinson et al. 1984, Carter 1988) or terrain-type data (Clarke 1995).

A continuous geospatial variable Z can be represented as a function of planimetric
coordinates (X,Y ), namely, Z 5 f (X,Y ). Mathematically, it is often simpli� ed as a
continuous and single-valued function. Surface-type data are a sample of discrete
measurements or observations on the continuous surface, consisting of a series of
XY Z triplets. If we have adequate information about the nature of the observations,
we might be able to give a tangible explanation for most of the anomalous values
and hence work out a way to treat them. In many cases, however, we, especially as
data users, may not know about unusual circumstances aŒecting the observations.
Therefore, we can only rely on the internal spatial relationship of the data in judging
which observations are outliers.

The fundamental assumption of our method is the spatial continuity and auto-
correlation of surface-type data. The presence of serious errors tends to destroy the
local continuity. Gross errors would appear as erratic peaks, pits, or unnatural
abrupt features if the data were graphically represented as a surface. Checking local
consistency and continuity for each data point in the context of its nearby points
can provide an important outlier detection clue. If a point is strongly inconsistent
with its neighbour points and statistically unreasonable , we consider it as a local
outlier. The key components constituting our method include identi� cation of
neighbour points, construction of outlier indices, and locally adaptive and robust
discordance analysis.

3. The outlier detection method
3.1. De� nition of neighbour points

To check local continuity and consistency, we need to de� ne a neighbourhood
for each point by selecting a subset of surrounding points. In the case of grid-based
spatial data, the adjacency and proximal relationships among data points are visually
obvious and computationally implicit in the order of row and column indices.
However, for an irregularly distributed data set, either scattered or traverse data,
the identi� cation of neighbour points is not straightforward because the number and
locations of nearby points are varied and irregular. To avoid the directional bias
and keep the number of neighbouring points from being excessively large or insu� -
ciently small, we choose the eight nearest points, each from one octant as illustrated
in � gure 1.

The neighbour points identi� ed by octant search are similar to the concept of
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Figure 1. De� nition of octant neighbour points.

natural neighbour points advocated by Watson (1985, 1992). The natural neighbour
points can be identi� ed through Delaunay triangulation (McCullagh et al. 1980,
Macedonio and Pareschi 1991, Tsai 1993, Shewchuk 1996). The Delaunay triangula-
tion is the geometric dual of the Voronoi (or Thiessen) polygons. Delaunay triangula-
tion not only generates an elegant tessellation of space, but also establishes full-
� edged topological relationships between data points. Natural neighbours of a query
point are the surrounding points that are directly linked to the query point by the
edges of Delaunay triangles. On average, each data point has six � rst-order natural
neighbours (Watson 1992, pp. 57–85). Our purpose for identifying neighbour points
is to construct a local interpolation residual index and a surface gradient index,
rather than to create an elegant tessellation or derivation of the topological relation-
ships. In this context, octant neighbour points are adequate to serve our purpose as
they automatically compensate for directional bias and local variation in the density
of data points like the natural neighbour points. Compared with the Delaunay
triangulation based natural neighbour method, our octant search method has less
computational cost and relies on a much simpler data structure.

3.2. Super-block based spatial sorting and searching
For a data point, its octant neighbours might be identi� ed by exhaustively

searching the entire data set. However, this brute-force method is often prohibitively
time-consuming and even operationally impossible when the data set under
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investigation is large. An e� cient approach to the nearest neighbour problem is to
establish the proximal order by spatially sorting and organizing data points before
the search. Al-Daoud and Roberts (1996) compared three alternative sorting tech-
niques, namely, K-d trees, quadtrees, and super-block based methods. They found
that the super-block based method is the most e� cient for extracting the proximal
relationships among irregularly distributed points. We utilize this method for identify-
ing octant neighbour points and de� ning a local area for estimation of local robust
summary statistics.

Super-block based method, also known as the cell or bin-based method, is an
optimal expected-time algorithm (Bentley et al. 1980, Hodgson 1989, Deutsch and
Journel 1992, pp. 30–34, Al-Daoud and Roberts 1996). The idea is to partition the
bounding rectangular area de� ned by the minimum and maximum X and Y coordin-
ates of the data set into an array of super blocks (cells or bins), then assign each
point to a block according to its location (� gure 2). Experiments show that the
optimal number of data points per block is about three (Bentley et al. 1980, Al-Daoud
and Roberts 1996), which can be approximately achieved by varying the number of
super-blocks along the X or Y direction:

l 5 Sm

c
(1)

where l is the number of blocks in the X or Y direction, m is the total number of
data points, and c is the optimal number of points per block. An array is constructed
to store the cumulative number of data points for indexed block i:

cum(i ) 5 �
i

j=1
p( j ) (i 5 1, 2, ..., k) (2)

where cum(i ) is the cumulative number of points in super blocks 1, 2, ..., i, p( j ) is the
number of data points in block j , and k is the total number of super blocks. The

Figure 2. Super-block based sorting and expansion searching.
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number of data points falling within any block i can be derived by the equation:

p(i ) 5 cum(i )Õ cum(i Õ 1) (i 5 1, 2, ..., k)

cum(0) 5 0 (3)

Therefore, a single array cum(i ) contains information on both the number of data
points in each block and their location in memory for retrieval. This is an important
computational strategy used in the super-block method to sort data points in two-
dimensional space (Deutsch and Journel 1992, pp. 30–34).

With the data points sorted into super-blocks, nearest neighbour points can be
quickly identi� ed by searching only a limited number of nearby blocks in a relatively
small neighbourhood around the query point q, instead of searching the entire data
set. As shown in � gure 2, the searching is performed in an expansion fashion. Namely,
we start with the core super block to which point q is located, and then proceed to
the surrounding blocks outward ring by ring until at least one point is found in each
octant, or until we have searched to a speci� ed maximum radius. As the geometric
shape of the searching ring is a square instead of a circle, a candidate nearest point
found in the super blocks on the nth searching ring in a diagonal direction might be
farther than points in the super blocks on the (n 1 1)th searching ring in a north-
south or east–west direction (� gure 2). To ensure a true nearest point for each octant,
the searching must continue for several additional rings after candidate nearest
points are found for all octants. In the case of square super blocks, the number of
additional rings that need to be searched is de� ned by integer(0.414n 1 0.5), if the
last candidate nearest point is identi� ed in a super block on the nth searching ring.

A typical geometric con� guration of the neighbourhood formed by the selected
octant neighbour points is illustrated in � gure 3. Though the size and shape changes
according to density and spatial arrangement of the data points, the octant neigh-
bourhood de� ned in this way has the qualities of compactness and equi-angularity .
Namely, the area of the neighbourhood is small, and there is a neighbour point
within every 45 ß angular range. This eŒectively compensates for directional bias and

Figure 3. A typical geometric con� guration of octant neighbourhood.
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local density variation of observation points and hence makes the following local
consistency and continuity test more reliable and eŒective.

3.3. L ocal outlier indices
Based on octant neighbour points, we designed two local outlier indices:

interpolation residual based index and surface gradient based index.

3.3.1. Interpolation residual based index
With continuity and autocorrelation assumptions of the underlying surface, the

Z value of a data point can be well predicted through interpolation based on its
surrounding neighbouring points. The diŒerence between the predicted value and
the observed value indicates the extent to which the data point under examination
is inconsistent with its neighbours. The idea of checking the observation value against
the predicted value from its neighbour points is referred to as cross-validation (Burt
and Barber 1996). Others have used this technique in diŒerent contexts, for example,
for selecting among alternative possible covariance models (Davis, 1987, Isaaks and
Srivastava 1989, pp. 351–364) and for accommodating noisy scattered data in surface
� tting (Wahba and Wendelberger 1980, Wahba 1984).

To obtain a reliable and outlier-resistant prediction, we designed a robust octant
inverse distance weighting (IDW) algorithm, in which the predicted value is a linearly
weighted function of its octant neighbours:

ẑ*
q

5 �
8

i=1
w

i
z
i

(4)

w
i
5

d Õ b
i

�
8

j=1
d Õ b

j

(5)

where ẑ*
q

is the predicted value for the query point q, z
i

is the observation value of
neighbour point p

i
, d

i
is the distance between the query point q and its neighbour

point p
i
, w

i
is the weight of neighbour point p

i
, and b is the global distance

friction factor.
One obvious problem with equation (4) and (5) is that if outliers exist in the

selected octant neighbour points, the predicted result will be contaminated and
biased. For example, the interpolated elevation value for point A in � gure 4 is 216,
which is greatly biased by its immediate neighbour B (outlier). Since the point A has
a large prediction residual of 62 (table 1), it tends to be misidenti� ed as an outlier.

To make the prediction robust in the face of outliers in the neighbour points, we
use a Jackknife technique to identify the most in� uential neighbour points (Burt and
Barber 1996). Namely, we drop one neighbour point at a time and use the remaining
seven neighbour points to make our prediction. Repeating this procedure for every
neighbour point, we obtain eight additional predictions:

ẑ(k)
q

5 �
i¡ k

w
i
z
i

(k 5 1, 2, ..., 8) (6)

w
i
5

d Õ b
i

�
8

j=1
d Õ b

j
Õ d Õ b

k

(k 5 1, 2, ..., 8) (7)

where ẑ(k)
q

is the predicted elevation value with the neighbour point p
k

omitted, and
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Figure 4. A hypothetical data set for illustration of residual and gradient index calculation.
Assume that the data values are surface elevation in metres.

Table 1. Calculation of residual and gradient indices.

Interpolated value Interpolated residual Gradient (ß )

Observed Non- Non- Non-
Data point value robust Robust robust Robust robust Robust

Point A 154 216 135 62 Õ 9 36 5.7
(normal)
Point B 750 172 181 578 569 59 57
(outlier)

Note: calculated from a hypothetical data set shown in � gure 4.

other parameters are the same as in equations (4) and (5). The absolute diŒerence
| ẑ(k)

q
Õ ẑ*

q
| indicates the in� uence of the neighbour point p

k
. We drop the two most

in� uential neighbour points p
k1

and p
k2

, those having the largest absolute diŒerence
| ẑ(k)

q
Õ ẑ*

q
|, and then take the weighted average of the remaining neighbour points as

the robust estimate of the surface value at point q:

ẑ
q
5 �

i¡ k1,k2
w

i
z
i

(8)

w
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�
8

j=1
d Õ b
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Õ d Õ b
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Õ d Õ b

k2

(9)

where ẑ
q

is the robust prediction value calculated with the two most in� uential
neighbour points p

k1
and p

k2
omitted. The decision to remove the two most in� uential

neighbouring points is subjective, where one could instead have chosen to drop one
or three in� uential points, depending upon one’s perception about the percentage of
outliers contained in the data set.

The residual between the observed value (recorded in the data set) and the
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predicted value at point q is used as a local outlier index:

Dz
q

5 z
q
Õ ẑ

q
(10)

where Dz
q

is the signed residual, and z
q

is the observed elevation value at the query
point q. Since the predicted value from equation (8) approximates the ‘true’ surface
value of the point being checked, the residuals calculated in (10) mainly account for
the error term. If the point being checked is contaminated by serious error, the
absolute value of Dz

q
must be signi� cantly larger and markedly deviate from the

central tendency of the residual index.
With this computational approach, we obtain a robust prediction of 135 for

point A (table 1), even though outlier point B is located nearby. A small prediction
residual of -9 for point A and a large prediction residual of 569 for point B (table 1)
enable us to keep point A as a normal point and identify point B as an outlier.

3.3.2. Surface gradient-based index
The surface gradient, indicating the surface shape and the local variation, is a

good measure of local surface continuity. The surface gradient around an individual
data point can be estimated from its adjacent neighbour points. As shown in � gure 3,
the point q in conjunction with its surrounding neighbour points form eight triangles.
These triangles have various orientations in three-dimensional space, depending on
the relative positions and heights of each pair of neighbours. The gradient for each
triangle can be calculated by taking the cross product of any pair of sides from each
triangle (Watson 1992, p. 95). For the triangle T

1
in � gure 3, the cross product vector

(X1 ,Y 1 ,Z1 ) is given by the Cartesian coordinates of the vertices p1 (x1 , y1 , z1 ),
p2 (x2 , y2 , z2 ) and q(x, y, z ):

X1 5 (y2 Õ y1 ) (z Õ z1 )Õ (y Õ y1 ) (z2 Õ z1 )

Y 1 5 (z2 Õ z1 )(x Õ x1 )Õ (z Õ z1 ) (x2 Õ x1 )

Z1 5 (x2 Õ x1 )(y Õ y1 )Õ (x Õ x1 ) (y2 Õ y1 ) (11)

This three-dimensional vector is perpendicular to the triangle plane T 1 , and its
length is twice the area of the triangle (Watson 1992: 95–95). Therefore, the gradient
(G1 ) and the area (a1 ) of the triangle plane T

1
can be calculated as:

G1 5 SAX1
Z1
B2

1 AY 1
Z1
B2

(12)

a1 5
Ó X2

1 1 Y 2
1 1 Z2

1
2

(13)

The weighted average of the gradients of the surrounding triangles re� ects the
overall gradient around the query data point q. If a triangle is large, its two neighbour
points must be far away from the query point, and the calculated gradient would be
less reliable for representing the surface shape around the query point. Therefore,
the larger the triangle, the smaller the weight it receives.

G*
q
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8

i=1
G

i
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j
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where G*
q

is the weighted average gradient, G
i
is the gradient of triangle T

i
, a

i
is the

area of triangle T
i
, and w

i
is the weight of triangle T

i
.

The surface gradient calculated in this way is subject to error, if outliers exist in
the neighbour points. To make the gradient estimate robust to the presence of
outliers in the neighbouring points, we drop the two most in� uential triangles T

k1
and T

k2
that have the largest gradient values. The weighted average of surface

gradients of the remaining six triangles is taken as the robust estimate for the surface
gradient around the point q:

G
q
5 �

i¡ k1,k2
w

i
G

i
(16)

w
i
5

a Õ 1
i

�
8

j=1
a Õ 1
j

Õ aÕ 1
k1

Õ aÕ 1
k2

(17)

where G
q

is the robust weighted average gradient with the triangle T
k1

and T
k2

dropped out. The decision to drop the two triangles is again arbitrary, where one
could omit a diŒerent number of in� uential triangles.

The calculation of surface gradient is very sensitive to data noise, and unreason-
able and erratic values are often associated with serious data errors, for example,
point B in � gure 4. By checking gradient estimates against their local trend, we can
identify anomalous data points too. As shown in table 1, the robust estimates of
surface gradients for point A and B are 5.7 ß and 57 ß , compared with non-robust
values of 36 ß and 59 ß computed from equations (14)–(15). Again, a small robust
gradient value for point A and a large robust gradient value for point B make it
possible to keep point A as a normal point and detect point B as an outlier.

3.4. L ocally adaptive and robust discordancy analysis
Although spatial autocorrelation is expected for direct surface-type data such as

topographic elevation, we can safely assume the randomness and independence of
the residual index Dz

q
and gradient index G

q
in a local area. Since the robustly

interpolated values approximate the ‘true’ surface values of the points being checked,
the residual between the observed values and the interpolated values mainly account
for the random errors, which are expected to have a negligibly small autocorrelation
and be stationary within a small local area. Since these two indices are calculated
in a local context, they make subtle anomalous points more pronounced. Based on
the central tendency and dispersion of the outlier indices, we can establish objective
criteria to diŒerentiate outliers from the rest of normal points.

In the context of grid-based data, Hannah (1981) used subjectively prede� ned,
� xed thresholds by specifying the allowable slope and allowable slope change.
Felic´simo (1994) employed a parametric statistical test based on global estimates
for the central tendency and dispersion. Distinguishing from their global approaches,
we developed locally adaptive and robust statistical criteria, which are more powerful
in detecting local outliers.

Most spatial processes are non-stationary, and the resulting surfaces are often
complex and heterogeneous. In the case of topography, for example, the magnitude
and dispersion of interpolation residuals would be relatively small in a � at or slightly
undulated area and large in a rugged and hilly area. Since the stationarity of outlier
indices is not guaranteed, the estimates for the central tendency and dispersion must
be conducted locally in order to account for the heterogeneity of the spatial data
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set. If we use global estimates based on the entire data set, the local outliers tend to
be more hidden and less intuitively apparent due to regional heterogeneity. For
example, in � gure 5 the interpolation residual values at data points N, O and P is
typical if subset A (relatively � at area) and subset B (rugged area) are considered
together. But, they are surely not typical within its local neighbourhood (within
subset A). To detect subtle local outliers, we need to develop locally adaptive criteria
in place of global criteria derived from the whole data set.

We use super blocks as the basic unit to construct a local area for estimating the
central tendency and dispersion of outlier indices. To obtain the valid and stable
local summary estimates, the number of data points in a local area must be su� ciently
large. In our application example, we set the minimum number of data points in the
local area to be 45. For each non-empty super block, we check the number of data
points inside. If the number is smaller than the speci� ed number, we expand the
local area in an expansion fashion (� gure 2) by including the surrounding super
blocks until the number of points is equal to or greater than the speci� ed number.
The extent of the local area de� ned in this way varies according to the density of
data points. Within a small local area, the spatial processes underlying the surface-
type data can be more safely assumed to be stationary.

For a local area, the mean and standard deviation are the best, unbiased measures
for the central tendency and the dispersion (spread), on the assumption of a normal
distribution of the sample without contamination. In the case of the interpolation
residual index, the mean (Dz) and standard deviation (s) are de� ned as:

Dz 5

�
n

j=1
Dz

j

n
(18)

s2 5

�
n

j=1
(Dz

j
Õ Dz)2

(n Õ 1)
(19)

Figure 5. A hypothetical data set for illustration of eŒectiveness of locally adaptive and
robust statistical criteria. Assume that the data values are interpolation residuals.
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where n is the number of data points in a local area. The deviation/spread statistic
T approximately follows the Student t distribution with n Õ 1 degrees of freedom
(Burt and Barber 1996, pp. 269–271, Felic´simo 1994, Barnett and Lewis 1994):

T 5
Dz

j
Õ Dz

s
(20)

Therefore, the probability

P(Õ t
a/2,nÕ 1 <

Dz
j
Õ Dz

s
< t

a/2,nÕ 1 ) 5 1 Õ a (21)

where 1 Õ a indicates a con� dence level, and t
a/2,nÕ 1 refers to the t value with an

upper-tail probability of a/2 and with n Õ 1 degrees of the freedom. Based on the
local estimates of central tendency and dispersion in this probability model, we can
construct a local con� dence interval (Dz Õ t

a/2,nÕ 1 · s, Dz1 t
a/2,nÕ 1 · s). The probability

that the random variable Dz
j

assumes a value outside this interval is a. Set a
su� ciently small, say, 0.05 or 0.01, and we can perform a discordancy test by
examining whether the residual value at point q is within the local con� dence interval.
If the calculated residual Dz

q
is beyond this interval, we � ag the point under investi-

gation as a local outlier, because the value deviates markedly from the statistical
model and appears unreasonable and anomalous relative to the local central tendency
and dispersion statistics.

However, the central tendency and dispersion measured by conventional mean
and standard deviation in equations (18) and (19) and corresponding con� dence
interval may be � awed and de� cient for two reasons. First, since mean and standard
deviation are highly sensitive to skew (asymmetry) , kurtosis (peakedness) , and unusu-
ally short or long tails, they could be poor measures for the central tendency and
dispersion if the data departs from the normal distribution. Secondly, the conven-
tional mean and standard deviation are also vulnerable to the presence of outliers
in the sample. When multiple outliers exist, the most extreme outlier would yield a
strong masking eŒect on other outliers (Tietjen and Moore 1972, Barnett and Lewis
1994, p. 114) if the conventional mean and standard deviation are used to construct
the con� dence interval. For example, with local mean and standard deviation based
criteria and at the con� dence level a 5 0.01 the most extreme point P in subset A
masked points N and O, and the most extreme points Q and R in subset B masked
points S and T (� gure 5 and table 2).

Although other measures of central tendency and dispersion could be used, we
adopt trimmed mean and winsorized standard deviation (Barnett and Lewis 1994,
pp. 68–69) to provide robust estimates for the central tendency and the dispersion:
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5
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(22)
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Dz(i)

n
(23)

s2
win

5
k[(Dz(k+1) Õ Dz

win
)2 1 (Dz(k+1) Õ Dz

win
)2 ] 1 �

n Õ k

i=k+1
(Dz(i)

Õ Dz
win

)2

n Õ 2k Õ 1
(24)



Detecting outliers 733

T
ab

le
2.

E
Œ

ec
ti

ve
n
es

s
o
f

lo
ca

ll
y

ad
ap

ti
v
e

an
d

ro
b
u

st
st

a
ti

st
ic

al
cr

it
er

ia
.

M
et

h
o

d
s

G
lo

b
a
l

cr
it

er
ia

L
o
ca

ll
y

ad
ap

ti
v
e

cr
it

er
ia

L
o
ca

ll
y

ad
ap

ti
v
e

an
d

ro
b
u

st
cr

it
er

ia

C
en

tr
a
l

te
n

d
en

cy
G

lo
b
a
l

m
ea

n
(2

.5
2

)
L

o
ca

l
m

ea
n

L
o
ca

l
tr

im
m

ed
m

ea
n

S
u

b
se

t
A

(Õ
1.

6
9

)
S
u

b
se

t
A

(Õ
2.

7
0

)
S
u

b
se

t
B

(6
.7

3
)

S
u

b
se

t
B

(6
.2

1
)

D
is

p
er

si
o

n
G

lo
b
a
l

S
td

.
D

ev
.

(5
4
.5

3
)

L
o
ca

l
S
td

.
D

ev
.

W
in

so
ri

ze
d

S
td

.
D

ev
.

S
u

b
se

t
A

(1
6
.1

5
)

S
u

b
se

t
A

(7
.0

0
)

S
u

b
se

t
B

(7
5
.6

2
)

S
u

b
se

t
B

(2
9
.3

3
)

a
5

0.
0
5

C
o

n
�
d

en
ce

in
te

rv
al

(Õ
10

6
.0

0
,
11

1
.0

3
)

S
u

b
se

t
A

(Õ
34

.3
1,

30
.9

3
)

S
u

b
se

t
A

(Õ
16

.9
8,

1
1
.5

8
)

S
u

b
se

t
B

(Õ
14

6
.0

2
,
15

9
.4

8
)

S
u

b
se

t
B

(Õ
53

.6
2,

66
.0

4
)

D
et

ec
te

d
o
u

tl
ie

rs
Q

,
R

,
S
,

T
d
et

ec
te

d
N

,
O

,
P

d
et

ec
te

d
in

su
b
se

t
A

I,
J,

K
,

L
,
M

N
,

O
P

d
et

ec
te

d
in

su
b
se

t
A

Q
,

R
d
et

ec
te

d
in

su
b
se

t
B

Q
,

R
,

S
,

T
,
U

,
V

,
W

,
X

,
Y

,
Z

d
et

ec
te

d
in

su
b
se

t
B

a
5

0.
0
1

C
o

n
�
d

en
ce

in
te

rv
al

(Õ
14

1
.4

4
,
14

6
.4

8
)

S
u

b
se

t
A

(Õ
45

.1
3,

41
.7

5
)

S
u

b
se

t
A

(Õ
21

.8
8,

16
.4

8
)

S
u

b
se

t
B

(Õ
19

6
.6

9
,
21

0
.1

5
)

S
u

b
se

t
B

(Õ
74

.1
5,

86
.5

7
)

D
et

ec
te

d
o
u

tl
ie

rs
Q

,
R

,
S

d
et

ec
te

d
P

d
et

ec
te

d
in

su
b
se

t
A

N
,

O
,

P
d
et

ec
te

d
in

su
b
se

t
A

Q
,

R
d
et

ec
te

d
in

su
b
se

t
B

Q
,

R
,

S
,

T
d
et

ec
te

d
in

su
b
se

t
B

N
o

te
:
ca

lc
u
la

te
d

fr
o

m
a

h
y
p
o

th
et

ic
d
a
ta

se
t

sh
o
w

n
in

�
g
u
re

5.
S
td

.
D

ev
. 5

S
ta

n
d
a
rd

D
ev

ia
ti

o
n
.



H. L iu et al.734

where Dz
trim

is the trimmed mean, Dz
win

is the winsorized mean, s
win

is the winsorized
standard deviation, Dz(i)

denotes the ith ordered interpolation residual, k is the
number of observations eliminated or winsorized at each end of the distribution,
and n is the total number of observations in the local area. As indicated in equations
(22)–(24), winsorization replaces the lower and upper ends of the ordered interpola-
tion residuals by their nearest adjacent values, while the trimming simply discards
the lower and upper ends (Barnett and Lewis 1994, pp. 68–69). According to the
suggestion of Iglewicz and Hoaglin (1993), we set the number (k) of observations
trimmed or winsorized at each end to 15% of the total observations. If 50% of the
observations are trimmed or winsorized, then respective means would be reduced to
the median of the sample observations. After trimming or winsorizing the extreme
sample values at two ends, the remaining data can be regarded as a clean subset
that is presumably free of outliers.

With the conventional mean Dz and standard deviation s replaced by the trimmed
mean Dz

trim
and winsorized standard deviation s

win
in equation (20), the corres-

ponding deviation/spread statistic is still distributed essentially as Student’s t
with n Õ 2k Õ 1 degrees of freedom over a range of diŒerent possible distributions
and in the presence of outliers (Tukey and McLaughlin 1963, Patel et al. 1988,
Iglewicz and Hoaglin 1993). As a result, we obtain a robust con� dence interval
(Dz

trim
Õ t

a/2,nÕ 2kÕ 1 · s
win

, Dz
trim

1 t
a/2,nÕ 2kÕ 1 · s

win
). Since the trimmed mean and winso-

rized standard deviation are less susceptive both to the form of the distribution and
to outliers, they provide robust estimates for the central tendency and dispersion
statistics over a spectrum of possible distributional forms, such as contaminated
versions of normal or other symmetric distributions.

As shown in table 2, if we use the conventional global criteria, only points Q, R
and S are detected as outliers at the con� dence level a 5 0.01. If we use the locally
adaptive and robust criteria based on the trimmed mean and winsorized standard
deviation, anomalous data points N, O and P in subset A and points Q, R, S, and
T in subset B are successfully detected. The speci� ed con� dence level aŒects the
number of detected outliers as well. More outliers will be labeled if we reduce the
degree of con� dence. For example, at the con� dence level a 5 0.05, points I, J, K, L ,
and M in subset A and U, V , W , X, Y , Z in subset B are also � agged as outliers
(� gure 5 and table 2).

The distributional form of surface gradient G
q

de� ned for local areas might be
more likely to deviate from the normal distribution. Hence, the use of robust
estimators is more important for obtaining reliable estimates for the central tendency
and dispersion. Consequently, we use the trimmed mean and winsorized standard
deviation to construct the con� dence interval. Since the surface gradient has positive
values and we are only interested in the upper bound outliers, the one-sided discord-
ance test is conducted to see if the surface gradient value G

q
at point q is larger than

the upper bound of the robust interval, namely, G
trim

1 t
a,n Õ 2k Õ 1 · s

win
, where G

trim
is

the trimmed mean, and s
win

is the winsorized standard deviation of the surface
gradient index.

3.5. Algorithm summary and implementation considerations
To summarize, the proposed method consists of the following component steps:

1. Partition the irregularly distributed data set into an array of super blocks and
sort the data points using a super-block based method;
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2. For each data point, identify its octant neighbour points by an expansion
searching strategy;

3. For each data point, calculate the interpolation residual between the observa-
tion value and the interpolated value from its neighbour points using equations
(8), (9), and (10);

4. For each data point, calculate the robust estimate for surface gradient using
equations (16) and (17);

5. Repeat the steps 2–4 until all data points are visited.
6. For each super block, de� ne a local area in an expansion way, calculate the

trimmed mean and winsorized standard deviation for the residual index by
using equations of (22)–(24), and construct the corresponding con� dence
interval. Similarly, derive the trimmed mean and winsorized standard deviation
and corresponding con� dence interval for the surface gradient index.

7. Check each data point to see whether the calculated residual index and
gradient index are located within their local con� dence interval. If either of
them is outside the con� dence interval, we label the corresponding data point
as a local outlier.

The proposed method involves a considerable amount of computation. The
reduction of computation cost is essential for practical applications of this method
to a large and dense data set. The most time consuming step in our method is the
identi� cation of octant neighbour points. As stated earlier, it is optimized by the use
of super-block based sorting and searching schemes. The computation cost involved
in the Jackknife technique is also minimized by using equations (6) and (7) in which
we subtract one point from the sum calculated in the previous step, instead of
accumulating the remaining values again. In addition, one-dimensional quicksort
algorithm (Press et al. 1992, pp. 332–336) is used to sort the data for calculating the
trimmed mean and the winsorized standard deviation in equations of (22)–(24).
These computational strategies make our error detection method computationally
e� cient.

In our implementation, almost all parameters were coded as variables instead of
� xed constants. These include the maximum search distance, the distance friction
factor, the number of the most in� uential points and triangles to be dropped in the
calculation of robust outlier indices, the percentage of sample points to be trimmed
or winsorized in the construction of robust summary statistics, minimum number of
samples for de� ning a local area, and the con� dence level for the statistical test. This
increases the � exibility of the program, and allows for diagnostic exploration of data
sets using diŒerent speci� cations of these parameters.

4. Veri� cation and analysis of outliers in a GIS environment
The outliers detected by our locally adaptive and robust statistical analysis

represent anomalous and doubtful values in the light of the continuity assumption
for the underlying surface. However, statistical outliers are not de� nitely bad or
erroneous points, though with a high probability to be so. For example, in spite of
the fact that the terrain surface is generally continuous and smooth, we still can � nd
natural cliŒs and escarpments, towers, skyscrapers, and other man-made structures
in the urban area. The correct data points along edges of these features might be
� agged as outliers as well. If we discard all outliers detected, some good and true
observations might be eliminated together with erroneous values. Therefore, we need
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to further examine anomalous values and decide whether such statistical outliers
should be retained or eliminated.

When the loss in the resolution of the spatial data caused by discarding some
good measurements are negligibly small compared to the problems caused by
keeping a few bad values, one can simply drop all labelled outliers. However, to gain
an understanding of error causes and distinguish good measurements from real
erroneous values, further investigation of outliers is surely required.

We implemented our error detection method using the C programming language
and integrated it with the ARC/INFO GIS system. By so doing, we are able to look
at anomalous values in association with other external data layers in a GIS environ-
ment. For example, we can superimpose outlier points detected in an elevation data
set on satellite images or digital hydrologic and geological maps for error veri� cation.
The outliers in a smooth terrain observed from the satellite imagery must represent
errors of some kind. Conversely, if outliers are located around natural cliŒs, steep
gorges, or human-made structures, they may convey signi� cant information about
surface discontinuity and hence should be retained for further investigation. The
justi� ed erroneous data points can be removed, remeasured or replaced by the
predicted value, depending on the actual application context.

The GIS technique is also useful in analysing the spatial pattern of anomalous
points and identifying anomalous regions. The location and spatial pattern of outliers
may provide important clues for reasoning potential causes for outlying observations.
The random, clustered, or linear pattern of anomalous data often correspond to
diŒerent error causes. If anomalous data points are randomly distributed, they are
most likely caused by random recording errors or white noise of measuring instru-
ments. If they are clustered in some regions, the outliers may be related to some
systematic errors, for instance, the malfunctioning of measuring instruments in a
special environment, miscalculations, edge eŒects when assembling smaller data sets
into a big data set, or a similar type of circumstance. Identi� cation of each cause
surely renders an opportunity for improving the quality of the data-gathering process.

5. An application example
We have successfully applied our method to both scattered and traverse types of

spatial data (Liu 1999). Here we only show the outlier detection result for a massive
irregular elevation data set derived by an automatic Synthetic Aperture Radar (SAR)
stereo technique (Leberl 1990). The stereo pair covers the Terra Nova Bay area of
Transantarctic Mountains in Antarctica. It consists of the Radarsat Standard Beam
2 image (� gure 6(a)) acquired on 9 October 1997 with an incident angle of 28 ß at
the scene centre and Standard Beam 7 image (� gure 6(b)) acquired on 20 September
1997 with an incident angle of 47 ß . The terrain in the scene is characterized by
mountainous glacial landforms. The rugged mountain slopes and relatively � at
valleys of Campbell Glacier and Priestley Glacier can be observed from SAR images
(� gure 6(a) and � gure 6(b)). After the SAR stereo processing, a dense and irregular
raw elevation data set, containing about 1 857 697 x, y, z triplets, was extracted from
the stereo image pair, and the average data density is about 186 points per squared
kilometre (Liu 1999). Contour representation of the raw elevation data (� gure 6(c))
shows a considerable number of erroneous and noisy measurements. The most
glaring errors include a number of arti� cial depressions and erratic hills at the
locations of A, B, C, D marked on � gure 6(c). The small closed and jagged contours
in the glacial � oors highlight the noisy nature of the raw elevation data derived from
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Figure 6. Outlier detection and removal in an irregular elevation data set derived from SAR
stereo technique. (a) original Standard Beam 2 image of SAR stereo pair; (b) original
Standard Beam 7 image of SAR stereo pair; (c) contour map derived from irregular
raw elevation data before outlier removal. Contours are at 100 m intervals; (d ) contour
map of irregular elevation data after outlier removal; (e) hill-shaded image of the raw
elevation data before outlier removal; and ( f ) hill-shaded image of the elevation data
after outlier removal.
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the SAR stereo technique. The arti� cial features and noisy spots are also evident in
the relief-shaded image of the raw elevation data (� gure 6(e)).

Using a Silicon Graphics Indy (SGI) workstation with a 175 MHz IP32 processor,
it required 25 minutes 12 seconds to complete the entire computation for our massive
data set of 1 857 697 irregular points, including the identi� cation of octant neighbour
points, calculation of outlier indices, and locally adaptive and robust discordance
testing. Using the brute-force method, 1 minute 58 seconds was required to identify
octant nearest neighbours for 100 data points in our massive data set. At this rate,
the entire data set would require 608 hours 54 minutes, just for the identi� cation of
octant neighbours. Therefore, the brute-force search method is practically impossible
for our example application.

Our method detects the overwhelming majority of anomalous values. Figure 6(d )
and 6( f ) respectively show the contours and hill-shaded image derived from irregular
elevation data points after the removal of detected anomalous values. From � gure 6(d )
and � gure 6( f ), we can see that erroneous values have been successfully eliminated
and the arti� cial features and spiky spots disappear, while the subtle terrain features
are still preserved.

When labelled outliers are overlain onto the satellite radar image in a GIS system,
we noticed that anomalous values are mainly concentrated either in the low contrast
and featureless regions of � at glacial � oors or in highly sloped regions of rugged
mountains. Because of the poor texture of the terrain or relief-induced geometric
distortions of SAR images ( layover and excessive foreshortening) in these regions,
an automatic image matching algorithm failed with SAR stereo pair, thereby produ-
cing gross errors in elevation measurements during the SAR stereo processing (Liu
1999 ).

6. Discussions and conclusions
Spatial data are often riddled with erroneous values that frustrate subsequent

spatial analysis and inference. In this paper, we proposed a new method to detect
anomalous values in irregularly distributed spatial data set. Based on octant neigh-
bour points, we constructed two sensitive outlier indices. DiŒerent from the conven-
tional global approach, we introduced locally adaptive and robust statistical criteria,
namely, letting the criteria varying across the entire data set according to the robust
summary statistics. Consequently, subtle local outliers that may not be detectable
with conventional methods are revealed. Through synthetic and real data sets, we
demonstrated that our method oŒers a sensitive capability for detecting local anomal-
ous values in irregularly distributed data sets with a known degree of con� dence.
We believe that our outlier detection method will have a wide range of applications
in disciplines that deal with spatially continuous data.

Outliers detected using our method only represent anomalous or doubtful values
in a statistical sense, and they are not necessarily erroneous data. Outliers may
convey important information about true discontinuity of geographical variables
under examination or provide clues for determining potential causes for anomalous
observations. In many cases, the location and spatial pattern of anomalous values
have serious practical implications. It should be stressed that the analysis of statistical
outliers has a wide range of applications other than error detection. For example,
one is often most interested in the anomalies in a geostatistical analysis, such as the
high-grade vein in a gold deposit or the impermeable layers that condition � ow in
a petroleum reservoir (Isaaks and Srivastava 1989, pp. 40–65, 351–368). The outlier
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detection method can help locate such anomalous regions. In the � eld of geographical
data mining and geographical knowledge discovery, outlier detection is a key method
for � nding anomalous patterns in large databases (Ng in press), which are not
erroneous data but interesting � ndings worthy of further attention. The danger of
losing useful information warrants further investigation of statistical outliers. By
combining our method with GIS software, we can conveniently verify and analyse
anomalous values in association with other geographic data layers.

Our method is mainly designed for handling large data sets. To minimize the
computational cost, we adopted a super-block based sorting scheme and other
e� cient algorithms. This eŒectively reduced the computational cost and made the
diagnostic check on a massive data set possible. When the data set under examination
is small, say, with fewer than 45 observations, the overall advantage of our methods
over conventional methods is minimal. This is partly because the super-block search-
ing algorithm is comparatively more e� cient with relatively large data sets, and
partly because reliable local robust summary statistics can only be estimated with
su� cient observations.

The performance of our method for a speci� c data set can be adjusted by changing
the desired con� dence level and other parameters. For example, the degree of
robustness of our statistical analysis can be strengthened by increasing the number
of the most in� uential points and triangles to be dropped in the calculation of outlier
indices or by increasing the percentage of samples to be trimmed or winsorized in
the construction of robust summary statistics. However, the trade-oŒis a risk of
reducing representativeness of statistical estimates. A decrease in the maximum
searching distance or a decrease in the minimum number of samples for the calcula-
tion of local summary statistics can increase the degree of locality of our method,
but the reliability of summary statistics may be attenuated due to the reduced
number of samples. Apparently, the speci� cation of these parameters involves user’s
subjective judgment or even intuition. Any qualitative information or prior know-
ledge about the data set will assist the selection of appropriate parameters. With no
prior knowledge, one is still able to select a set of reasonable parameters through
trial and error. In this sense, our approach serves as an exploratory spatial data
analysis tool, rather than a deterministic and analytical solution to outlier problems.

Our method was validated using both hypothetic and real data sets. As future
work, the performance of our method will need to be further examined with varied
parameters through a more controlled experiment. In addition, we assumed that the
interpolation residual index and gradient index are random and spatially independent
in a small local area based on the theoretical reasoning. The actual strength of
spatial autocorrelation of these two indices within a local area is also worth further
investigation.
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