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Abstract. This paper presents a comprehensive approach to effectively and
accurately extract coastlines from satellite imagery. It consists of a sequence of
image processing algorithms, in which the key component is image segmentation
based on a locally adaptive thresholding technique. Several technical innovations
have been made to improve the accuracy and efficiency for determining the land/
water boundaries. The use of the Levenberg-Marquardt method and the Canny
edge detector speeds up the convergence of iterative Gaussian curve fitting
process and improves the accuracy of the bimodal Gaussian parameters. The
result is increased reliability of local thresholds for image segmentation. A series
of further image processing steps are applied to the segmented images.
Particularly, grouping and labelling contiguous image regions into individual
image objects enables us to utilize heuristic human knowledge about the size and
continuity of the land and ocean masses to discriminate the true coastline from
other object boundaries. The final product of our processing chain is a vector-
based line coverage of the coastline, which can be readily incorporated into a
GIS database. Our method has been applied to both radar and optical satellite
images, and the positional precision of the resulting coastline is measured at the
pixel level.

1. Introduction
A coastline is the boundary between land and ocean masses. Knowledge of

coastline is the basis for measuring and characterizing land and water resources,

such as the area of the land, and the perimeter of coastline. Information about

coastline position, orientation and geometric shape is also essential for autonomous

navigation, geographical exploration, coastal erosion monitoring and modelling,

and coastal resource inventory and management. Conventionally, coastlines were

manually identified and traced by cartographers with a pencil on vellum paper

overlaying on aerial photographs. Due to the subjectivity and substantial effort involved

in manual delineation, an automatic delineation method has been long desired.

Automated coastline extraction from digital image data belongs to the boundary
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detection problem in the field of computer vision and image processing, in which

edge detection and image segmentation are two conventional approaches to the

boundary detection. These dual approaches are based on two fundamental

observations (Gonzalez and Woods 1992, Pitas 2000): (1) discontinuity: image
intensity (grey) values at or near boundaries change abruptly; and (2) similarity:

boundaries are located between two relatively homogeneous regions, each with

different average intensity values. Technically, edge detection methods emphasize

the first property and locate the meaningful intensity discontinuity by using spatial

differentiation or edge template operations. Segmentation is conceptually based on

the second property. Commonly used segmentation algorithms include threshold-

ing, region growing, and region splitting and merging (Gonzalez and Woods 1992,

Parker 1997). Edge detection is relatively simpler to implement than segmentation.
However, edge detection methods suffer from the fact that the edge pixels produced

by edge detectors are quite discontinuous and seldom characterize a coastline

completely (Lee and Jurkevich 1990, Mason and Davenport 1996). To assemble

and link edge pixels separated by small breaks is computationally very intensive,

even in a crude approximation (Ballard and Brown 1982, Lee and Jurkevich 1990,

Pitas 2000). In contrast, image segmentation methods have the advantage in

creating a continuous boundary. But, segmentation methods require more post-

segmentation processing steps to delineate the boundary pixels, and face difficulties
of determining a reliable threshold in thresholding algorithms and formulating

homogeneous criteria in region growing, and region splitting and merging

algorithms.

Because of the frequent lack of consistent, sufficient intensity contrast between

land and water regions and the complexity in distinguishing coastline edges from

other object edges, most general-purpose edge detection and image segmentation

techniques are inadequate for a coastline extraction task. It is recognized that a

comprehensive procedure is required to automate the coastline extraction process
(Lee and Jurkevich 1990, Sohn and Jezek 1999). Lee and Jurkevich (1990) presented

a coastline extraction technique based on an edge detection algorithm. They

employed the Sobel edge operator and created a preliminary edge image for a small

portion (5126512 pixels) of a SEASAT synthetic aperture radar (SAR) image. To

link edge gaps in the derived coastline, they applied a 565 mean filter twice on the

edge image, and subsequently traced the edge pixels. Due to the use of a 565 mean

filter on the edge image, the positional accuracy of the extracted coastline is limited

for the purpose of cartographic mapping, as they acknowledged (Lee and Jurkevich
1990). Ryan et al. (1991) used an image segmentation method to approach the

coastline extraction problem and tested their method on several small portions

(2566256) of scanned US Geological Survey (USGS) aerial photographs. They

applied a neural network method on a texture measure of the images to separate

land and water regions. The use of texture influenced the accuracy, and the need for

training neural nets also limited its application to a large volume of full-scene image

data. Mason and Davenport (1996) employed an edge detection method with a

coarse–fine resolution processing strategy and applied their approach to several full-
scene European Remote Sensing Satellite (ERS)-1 SAR images. A contrast ratio

edge detector (Touzi et al. 1988, Mason and Davenport 1996) was used to

determine shoreline pixels that have strong edge strength. The edge gaps along the

coastline are filled with the use of an interpolation procedure based on active

contour models (Kass et al. 1987, Cohen 1991, Williams and Shah 1992). Due to

the difficulty in setting a global contrast ratio threshold to define coastline edge
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segments, and the limitations in the active contour modelling to fill the edge gaps,

the delineation accuracy of their method is also limited. Sohn and Jezek (1999)

presented an alternative approach to automatically mapping the coastline. The key

component of their method is image segmentation based on a locally adaptive
thresholding algorithm, which was first proposed by Chow and Kaneko (1972) for

detecting the boundaries of the left ventricle in a heart image and later employed by

Haverkamp et al. (1995) to classify sea ice. Sohn and Jezek (1999) applied their

coastline extraction approach to both ERS-1 SAR and Satellite Probatoire

d’Observation de la Terre (SPOT) images and achieved an adequate accuracy for

extracting ice margins for Greenland.

The present research aims to provide a comprehensive algorithmic foundation

for extracting a vector-based representation of coastline from image data with
minimized human intervention. As in Chow and Kaneko (1972), Haverkamp et al.

(1995) and Sohn and Jezek (1999), we employ the locally adaptive thresholding

algorithm to perform the image segmentation. We also make use of the fact that

ocean and land masses are usually large connected regions, as in Ryan et al. (1991)

and Mason and Davenport (1996). By exploiting the best algorithmic elements of

previous studies, we developed an effective, operational method for coastline

extraction, with several important technical innovations. The final product is a

cartographic line coverage of the coastline, which can be readily incorporated into a
Geographical Information System (GIS) database. Our method has been

implemented using the C-programming language and applied to both radar and

optical satellite images. Visual comparison between the extracted coastlines and the

original satellite images shows that the positional precision of the resulting coastline

is measured to pixel level.

In the following sections, we will first outline our coastline extraction method.

Then, we will describe major image processing algorithms, with the emphasis on

our technical improvements. Next, we will demonstrate the application results on

both radar and optical satellite images. In the final section, we will present some
technical remarks and conclusions.

2. Methodology overview

Our coastline extraction method consists of three groups of image processing

algorithms: pre-segmentation, segmentation and post-segmentation. The pre-

segmentation processing algorithms aim to suppress image noise and enhance

edge elements in the images. The segmentation algorithms partition the input image

into homogeneous land and water regions using a locally adaptive threshold. The
post-segmentation processing algorithms are designed to differentiate the coastline

edges from other object edges, and trace the coastline edge pixels into a vector

representation. Our objective is to derive a coastline with a precise geographical

location and reliable geometric shape. As the geographical coordinates of the

derived coastline are inherited from the source satellite imagery, the input images

must be geocoded to assign precise geographical coordinates to image pixels and

rectified to remove geometric and terrain distortions in the imagery before applying

our coastline extraction method. The geocoding and orthorectification of the source
images are beyond the scope of this paper. In our analysis, we assume that the input

image has been geo-referenced and terrain-corrected. We also assume that the input

image is a panchromatic or single band grey-scale image whose intensity value

ranges between 0 and 255. For the sake of clarity, a flow chart is given in figure 1 to

outline our algorithms and image processing chain.
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3. Pre-segmentation processing algorithms

There are two primary purposes for preprocessing the image before performing

segmentation. The first purpose is to filter the image noise and speckle so as to

reduce isolated and noisy edges in the subsequent image segmentation. The second

is to enhance the edges along the coastline while suppressing other unimportant

edges inside land or ocean mass.

3.1. Noise removal

To preserve the precise position of the coastline, an edge-preserving operator is

required to remove the image noise. A Gaussian filter is able to filter optical images

without blurring the major edge features. The Lee filter (Lee 1986) is capable of

reducing radar noise and speckle without degrading the sharpness of the edges.

Other filters, such as the Frost filter (Frost et al. 1982), Kuan filter (Kuan et al.

1985, 1987), Median filter (Rees and Stachell 1997) and Gamma MAP (Maximum a

Posteriori) filter (Oliver and Quegan 1998), may be used to replace the Lee filter for

suppressing radar speckle while preserving edges.

3.2. Edge enhancement

In the preprocessing stage, we also utilize an anisotropic diffusion algorithm

(Perona and Malik 1990, Saint-Marc et al. 1991, Sohn and Jezek 1999) to enhance

Figure 1. Diagram for image processing chain and data flow.
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strong edges along the coastline and suppress the weak edges and interior variations

inside the land or ocean masses.

Figure 2 shows the effect of the pre-segmentation processing. After applying the

Lee filter and anisotropic diffusion operation to a SAR image, the image noise and

unwanted weak edges are reduced, and strong edges along the coastline are

enhanced.

4. Image segmentation using locally adaptive thresholding method
The purpose of image segmentation is to separate the image into its constituent

homogeneous regions. The border pixels between segmented land/water regions can

then be delineated as the coastlines. In order to reliably separate land objects from

the ocean background, a locally adaptive thresholding algorithm is used for image

segmentation. If a single global threshold is used for the entire image to determine

the land/water boundaries, some local coastline edges will remain undetected due to

the heterogeneity of the image intensity contrast, causing the discontinuity of

coastline edges in low contrast areas in the image. Our thresholding method sets the

threshold value dynamically according to the local characteristics to achieve a good

separation between the land and ocean water.

4.1. Analytically determining local thresholds by fitting a bimodal Gaussian curve

In our analysis, we divide the entire image into a set of small, overlapping

regions. The image regions are a square whose width (w) is a controllable

parameter. The value of w should be small enough so that only one or two

categories of image pixels exist in the small region. It also should be big enough to

ensure reliable statistical analysis of the histogram of the region. The adjustment of

Figure 2. The effect of pre-segmentation processing: (a) before applying the Lee filter and
anisotropic diffusion operation; and (b) after applying the Lee filter and anisotropic
diffusion.
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this parameter is helpful for tuning the method to a particular coastal environment

or to a particular type of image source. Our extensive experiments show that it is

appropriate to set it to a value between 25 and 75 pixels. There is 50% overlapping

between adjacent image regions. Let row and col denote the row and column

number of the image, then the number of the resulting regions will be 2*col/w in the

horizontal direction and 2*row/w in the vertical direction. For each small region, we

examine the bimodality and analytically determine a local threshold value to

separate the land (object) pixels from the water (background) pixels.

If a small region of the image consists solely of the land or the water pixels, the

probability distribution of the intensity values will be unimodal. However, if the

image region contains a coastline, it implies that the image consists of both land

and water pixels. Consequently, intensity values of land pixels and water pixels will

be grouped into two dominant modes (lobes) with relatively distinct mean values in

the image histogram. The two component distributions commonly overlap each

other. As shown in figure 3, the overall histogram for this region generally exhibits

two peaks and a valley, namely, a bimodal shape. The problem of determining the

boundary reduces to that of assigning each image pixel to a particular component

distribution based on optimal threshold value corresponding to the local histogram

minimum (the valley point). Given the histogram valley point, the image pixels in

the small region can be reliably classified into land and ocean pixels.
To automate the determination of the threshold value, we need to model the

bimodal histogram and computationally derive the valley point for each image

region, rather than visually picking the valley point from the shape property of the

histogram. Our assumption is that the bimodal distribution is a mixture of two

Gaussian (normal) distribution functions (figure 3) (Haverkamp et al. 1995, Sohn

and Jezek 1999). The intensity values of the image pixels are regarded as random

numbers drawn from one of two normal distributions. Each component Gaussian

(normal) distribution can be statistically defined by two parameters: mean and

standard deviation. A mixture of two normal distributions w1(x) and w2(x) has a

Figure 3. Two components of the bimodal Gaussian curve.
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probability density function p(x) given by the following equations:
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where m1 and m2 are the mean values of two component normal distributions, s1

and s2 are the standard deviations about the means, and p1 is the coefficient of the

mixture, representing the theoretical fraction of area occupied by water (back-

ground) pixels in the image region. As shown in equation (5), the mixture density

function is characterized by five unknown parameters. If these five parameters are

determined, the optimal threshold (the valley point in the histogram) can be

analytically determined by solving a quadratic equation.

4.2. Using the Lenvenberg-Margardt method to iteratively fit the Gaussian curve

With an observed histogram h(i) for each image region, the five parameters can

be calculated. Mathematically, it is a problem of nonlinear function minimization,

in which the parameters of the model are adjusted to yield best-fit parameters. A

merit function is defined to measure the agreement between the observed histogram

and the bimodal Gaussian curve with a particular choice of parameter values. In

the least-squares fit method, the sum of squares errors x2 is used as the merit

function:
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Optimal estimates for the five parameters of the bimodal Gaussian curve minimize

the merit function x2.
The nonlinear minimization problem needs to be approached iteratively. Chow

and Kaneko (1972) used a hill climbing method employing the conjugate gradients.

This method is unstable and fails to converge upon a solution in some situations

(Chow and Kaneko 1972, Press et al. 1992). Haverkamp et al. (1995) and Sohn and

Jezek (1999) used a stochastic approximation algorithm (Kashyap and Blaydon

1968, Young and Coraluppi 1970) for fitting the Gaussian parameters. The

stochastic approximation algorithm has a slow convergence rate (Young and

Coraluppi 1970). In our implementation, we introduce the Levenberg-Marquardt

method (Press et al. 1992), which is an elegant combination of the inverse Hessian

matrix (the second derivative matrix) algorithm and the steepest descent algorithm.

When the parameter estimations are far from the minimum, the steepest descent

algorithm is used. As the minimum is approached, it smoothly switches to the

inverse Hessian matrix algorithm. By exploiting the advantages of both the steepest
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descent method and the inverse-Hessian matrix method, the Levenberg-Marquardt

method makes the fitting process rapidly converge to a reliable solution.

We derived the first and second partial derivatives of the merit function

x2(p1,m1,s1,m2,s2) with respect to each of the five parameters for specifying

the components of the Hessian matrix in the minimization algorithm. According to

the Levenberg-Marquardt method, we developed the iterative procedure for

fitting bimodal Gaussian parameters. One round of iteration is described as

follows:

1. Given the observed histogram h(i) and initial estimates for the five parameters

m1(0), m2(0), s1(0), s2(0), and p1(0), compute x2(p1(0),m1(0),s1(0),m2(0), s2(0))

using equation (6).
2. Set l to a modest value of 0.001.

3. Solve the simultaneous linear equations (7) for Dp1, Dm1, Ds1, Dm2 and Ds2 by

the Gauss-Jordan elimination method (Press et al. 1992).
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4. Evaluate x2(p1(0)zDp1,m1(0)zDm1,s1(0)zDs1,m2(0)zDm2,s2(0)zDs2) using

equation (6).

5. If x2( p1(0)zDp1,m1(0)zDm1,s1(0)zDs1,m2(0)zDm2,s2(0)zDs2)ox2(p1(0),m1(0),

s1(0),m2(0),s2(0)), increase l by a factor of 10 and go back to step 3.

If x2(p1(0)zDp1,m1(0)zDm1,s1(0)zDs1,m2(0)zDm2,s2(0)zDs2)vx2(p1(0),m1(0),

s1(0),m2(0),s2(0)), decrease l by a factor of 10, and then update the initial

estimates, namely, replace p1(0),m1(0),s1(0),m2(0),s2(0) by p1(0)zDp1,m1(0)z

Dm1,s1(0)zDs1,m2(0)zDm2,s2(0)zDs2. Then go back to step 3 and

perform the next round of iteration for refining the estimates for the five

parameters.

The parameter l controls the switching between the steepest descent algorithm

and the inverse Hessian matrix algorithm. When l is large, the steepest descent

algorithm is used. When l approaches 0, the inverse Hessian matrix algorithm is

used. The convergence condition for stopping the iteration is that a change in the

parameters only decreases x2 by a negligible amount specified by the user. Once the

convergence condition is satisfied, the final fitted parameters can be computed by

setting l~0 and inversing the matrix consisting of the coefficients of the left side of

equation (7). The covariance matrix of the standard errors can also be calculated at

this stage for analysing the goodness-of-fit for each parameter.

4.3. Integrating the Canny edge detector to improve the estimation of Gaussian

parameters

As described above, the bimodal Gaussian curve fitting process is based on the

observed histogram of each small image region. To determine an optimal threshold,

the most important aspect is to reliably identify the valley point in the observed

944 H. Liu and K. C. Jezek



histogram (figure 3). It is intuitively evident that the chance of obtaining a good

threshold should be considerably enhanced if the two peaks of the observed

histogram are tall, narrow and symmetrical, and if these peaks are clearly separated

by a deep valley. It is the case if the land region and water region in the image are

homogeneous and have distinctive intensity values. However, in many cases the

intensity values of the land region and the water region may slowly vary or may

contain image noise and speckle. As a result of sampling or limited resolution of

sensor, the edge pixels at or near the boundary between land and water regions

often appear as a transitional, mixed zone, which may extend across some number

of pixels. Owing to the contribution of the mixed pixels, the separation of

histogram lobes will be blurred. This adversely influences the calibration of bimodal

Gaussian parameters, therefore giving an unreliable estimate for the local threshold

(Ahuja and Rosenfeld 1978, Rosenfeld and Davis 1978, Weszka and Rosenfeld

1979, Narayanan and Rosenfeld 1981).

To achieve an observed histogram with two distinguished lobes, the Canny edge

detector (Canny 1986, Parker 1997) is employed to identify the mixed (edge) pixels

in the image region. The Canny edge detector works in a multi-stage process. First,

the image is smoothed by Gaussian convolution, then two-dimensional first

derivatives are computed, the gradient magnitude (edge strength) and gradient

direction are calculated. The first-order derivative of an image f(x,y) at location

(x,y) is defined as the two-dimensional vector:

G f x,yð Þ½ �~
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~

Lf
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" #

ð8Þ
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The gradient direction (edge orientation) is defined as:

h~ arctan
Gy

Gx

{
3

4
p ð10Þ

Next, non-maximal suppression process is applied to the gradient magnitude (edge

strength) image to identify the local maxima. Only pixels with edge strength larger

than their two adjacent pixels in the gradient direction are identified as edge

candidates and others are set to zero. Non-maximal suppression results in one-pixel

wide edge segments. To remove false edge segments caused by noise and fine

texture, a hysteresis tracking process is further applied with two thresholds in which

all candidate edge pixels below the lower threshold are labelled as non-edges and all

pixels above the low threshold that can be connected to any pixels above the high

threshold through a chain of edge pixels are labelled as edge pixels.

Our purpose in using the Canny edge detector is to remove the mixed pixels

from the formation of the observation histogram. By expanding (dilating) the edge

pixels identified by the Canny edge detector into their immediate neighbourhood, a

transitional buffer zone is created around the edge pixels. All pixels inside this

buffer zone are excluded from the formation of the observed histogram. As

demonstrated in figure 4, removal of mixed, transitional edge pixels from the

observed histogram formation has effectively sharpened the valley between the

peaks of the histogram. This ensures that local thresholds could be more accurately

determined.
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The observed histogram can be further smoothed using a one-dimensional low-

pass filter:

hs ið Þ~ h i{2ð Þz2h i{1ð Þz3h ið Þz2h iz1ð Þzh iz2ð Þ
9

ð11Þ

The smoothed version hs(i) is less susceptible to image noise than is the original h(i).

4.4. Using the Canny edge detector to provide a reliable basis for generating

initial values for Gaussian parameters

Fitting a nonlinear Gaussian curve on the observed histogram is an ill-

conditioned minimization problem, and the global minimization is not guaranteed

(Chow and Kaneko 1972, Press et al. 1992). However, it can be accomplished if

reasonably good initial values for the five parameters are used. In Chow and

Kaneko (1972), Haverkamp et al. (1995) and Sohn and Jezek (1999), the initial

values of the five parameters were estimated based on the global mean of the image

region. The histogram of the image region was dissected into two parts using the

global mean value as the dividing point. Then, the mean and standard deviation

were calculated for each part of the histogram as the initial estimates for two

component distributions. This procedure is appropriate only if the image region is

equally divided by land pixels and water pixels. However, in most cases the land

area is smaller or larger than the water area in an arbitrarily selected image region.

Figure 4. Sharpen observed histogram by removing mixed edge pixels: (a) a sample image
region; (b) edge pixels (white) and their immediate neighbours (grey) identified by the
Canny edge detector; (c) image histogram of the original image region with spikes in
the valley between two lobes; and (d ) sharpened image histogram after removing the
pixels in the transitional buffer zone in (b).
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In this situation, their procedure will generate biased, unreliable initial estimates for

the parameters, slowing the convergence of iterative fitting process or even failing to

converge to a solution.

To create reliable initial values for the Gaussian parameters, we developed a

new procedure based on the transitional buffer zone identified by the Canny edge

detector. As the immediate neighbours on both sides of the edge pixels are included,

the buffer zone contains an approximately equal number of nearby land and water

pixels as well as transitional edge pixels (figure 4(b)). We use the mean value of this

buffer zone, instead of the entire image region, as the dividing point to separate the

histogram of the image region into two parts. The mean and standard deviation are

calculated for each part of the histogram as the initial estimates for m1(0), s1(0),

m2(0), s2(0), and the fraction of the pixels in the first part of the histogram is used as

the initial value for the coefficient of mixture p1(0). Our procedure is independent of

the relative size between land (object) and water (background) areas in the image

region, and creates much more reliable initial estimates than the previously used

method. As shown in figure 5(a), the conventional method produced very poor

initial estimates for the image region shown in figure 4(a), which failed the

convergence of iterative fitting process. Our new procedure creates reliable initial

estimates (figure 5(b)), with which optimal estimates for the five Gaussian

parameters are achieved only after three iterations (figure 5(c)).

4.5. Bimodality test

To ensure the reliability of threshold estimation, we only select an image region

whose histogram has appreciable bimodality for threshold computation. The

bimodality is measured by the valley-to-peak ratio:

d~

Min p̂p ið Þf g
m1vivm2

Min p̂p m1ð Þ,p̂p m2ð Þf g ð12Þ

where p̂p is the Gaussian curve fitted in the previous steps. In our applications, the

bimodality criteria are set as: (1) the valley-to-peak ratio dv0.8; and (2) the means

of the two component distribution must differ by more than three grey levels:

m22m1w3.

4.6. Computing local threshold by solving a quadratic equation

For each image region whose histogram has appreciable bimodality and passed

the bimodality test, the optimal threshold value T is computed by solving the

following quadratic equation:

AT2zBTzC~0 ð13Þ
where

A~s2
1{s2

2

B~2 m1s2
2{m2s2

1

� �

C~s2
1m2

2{s2
2m2

1z2s2
1s2

2 ln
s2p1

s1p2

ðÞ

The above quadratic formula is derived from the method of maximum likelihood

for the value of threshold T, which minimizes the probability of misclassification

(Chow and Kaneko 1972, Gonzalez and Woods 1992).
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Figure 5. Determination of initial values for Gaussian parameters: (a) initial bimodal
Gaussian curve with parameters calculated by conventional method; (b) initial
bimodal Gaussian curve with parameters calculated by our new method; and (c) best-
fitted bimodal Gaussian curve by the Levenberg-Marquardt method after three
iterations.
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4.7. Local threshold interpolation and image segmentation

In Haverkamp et al. (1995) and Sohn and Jezek (1999), threshold values

calculated for different regions were clustered into two groups—upper thresholds

and lower thresholds—and then the image pixels were separated into three classes

using the upper and lower thresholds. Our experiments show that clustering

thresholds into two groups and subsequently segmenting the image into three

classes tends to create spurious coastline edges and adversely influences the

accuracy of the coastline position.

In our implementation, we directly interpolate the threshold values computed

from previous steps without clustering them into two groups. The interpolation

method that we used is the inverse distance weighted (IDW) method, which is

similar to the one used in Haverkamp et al. (1995). The threshold for a region that

fails the bimodality test is calculated through the weighted average of the thresholds

of neighbouring regions that have passed the bimodality test, and the weight

is determined according to the normalized inverse distance. As a result of

interpolation, each image pixel (i, j) has a locally adaptive threshold value Ti,j.

A binary image g(i, j) is created after the thresholding operation:

g i, jð Þ~
255, if f i, jð Þ > Ti,j

0, if f i, jð Þ¡Ti,j

�

ð14Þ

where f(i, j) is the intensity value of the image pixel at (i, j), and Ti,j is the locally

adaptive threshold. The pixels with a higher intensity value than the local threshold

are coded as 255 (land pixels), while the pixels with a lower intensity value than the

local threshold are coded as 0 (water pixels).

5. Post-segmentation processing

5.1. Region grouping and labelling

Digital image segmentation produces a binary image output g(i, j), which

consists of various connected image regions. Any contiguous regions of land or

water in g(i, j) can be grouped into a higher level of representation—image objects

(figure 6). Each image object is then labelled by a unique identification number and

characterized by its size, position and geometric shape. Analysis of the geometric

properties of image objects renders the capability of differentiating the true

coastline edge pixels from other object edge segments.

The region grouping and labelling algorithm implemented in this research is

based on a ‘grassfire’ concept. The image is scanned in a row-wise manner, and a

‘fire’ is set at the first pixel of an image object. The fire propagates to all pixels

belonging to the four- or eight-neighbourhood of the current pixel. The

propagation is continued recursively until all pixels of the image object are

‘burnt’. The ‘fire’ is extinguished after all objects in the image are labelled. During

the grouping and labelling process, the areal size and other properties of each

labelled object are calculated.

5.2. Two passes of selective removal of small image objects

Based on the image objects extracted from the segmented image, heuristic

human knowledge about the size and continuity of land and ocean masses is

applied to separate true coastline edges from other object boundaries. The

fundamental observation is that both land and ocean masses are large, continuous

image objects. In the first pass of processing, the water pixels coded as 0s in g(i, j)
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are grouped and labelled as individual image objects (figure 6(b)). The small image

objects identified in this pass often correspond to wetlands, lakes, stream, shadows

or image noise in the land area. Since the boundaries of these small image objects

are not true coastline, they are dissolved into the land area (figure 6(c)). In the

second pass of processing, the land pixels coded as 255s are grouped and labelled

into individual image objects. Small, scattered image objects identified in the ocean

are mainly due to floating ice, icebergs, ships, other ocean facilities or image noise.

Similarly, these isolated small image objects identified with a selected area threshold

can be fused into the ocean area (figure 6(e)). After two passes of removal of
residual, isolated image objects, only two large continuous land and ocean objects

are left. This procedure effectively eliminates unwanted objects whose boundaries

are not the coastline, and therefore minimizes the editing work for cleaning up the

final coastline product.

5.3. Morphological dilation and erosion

The morphological operation of dilation immediately followed by erosion

produces the closing operator (Parker 1997). The use of the closing operation tends

to generalize the jagged boundaries of image objects, making the coastline

morphologically smoother.

5.4. Delineating the boundary pixels of image objects into raster image of coastline

A coastline is defined as the boundary of land image objects. Each land pixel in

the image objects is scanned by a 363 neighbourhood window to examine its four

immediate neighbours (horizontal and vertical). If one or more neighbours of the

land pixel belong to water (background) pixels, this land pixel is then flagged as

boundary pixel and coded with a value of 255. Otherwise, the pixel will receive a

Figure 6. Image region grouping and labelling: (a) segmented image with land pixels (grey)
and water pixels (white); (b) water pixels (white) are grouped into three image objects
1, 2 and 3; (c) small image objects 1 and 3 are removed; (d ) land pixels (grey) are
grouped into four image objects 4, 5, 6 and 7; (e) small image objects 5, 6 and 7 are
removed, and only two big objects—2 (ocean water) and 4 (land)—are left; and ( f )
coastline edge pixels are delineated.
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value of 0 as a background pixel (figure 6(f )). In this way, all land pixels

immediately adjacent to the water pixels are extracted to form the land/water

boundary:

b i, jð Þ~
255,if g i, jð Þ~255 and g i{1, jð Þ, or g iz1, jð Þ, or g i, j{1ð Þ, or g i, jz1ð Þ~0ð Þ
0, otherwise

�

where b(i, j) is the raster image of extracted coastline.

5.5. Line tracing and vectorization

Edge tracing is the process of following the edge pixels and recording their

coordinates into a list of vector line segments. We employ a recursive algorithm for

edge tracing. With a starting pixel, the tracing direction for the next step is defined

based on the principle of minimizing angular change. The algorithm checks the

eight-connected neighbours of the starting pixel, and seven tracing directions are

allowed (figure 7(a)). The first candidate successor is the edge pixel that lies in the

direction defined by the previous and current edge pixel. If such a successor does

not exist, the algorithm searches other possible successors that result in a minimum

angular change in the tracing direction. The tracing continues recursively until no

new candidate pixel is available. This tracing procedure tends to produce a smooth

vector boundary with a low curvature (figure 7(b)). We record the coordinates of

traced boundary pixels as a series of vector line segments in ArcInfo Ungenerate

format. Based on the Ungenerate file, an ArcInfo vector line coverage can be

created to represent the final coastline.

6. Application examples

Two examples are given in this paper to demonstrate the effectiveness and

performance of the processing chain.

6.1. Extracting coastline of Antarctica from Radarsat SAR images

The SAR images used in this example were acquired by the Canadian Satellite

Radarsat-1 using C-band sensor during the first Antarctic Imaging Campaign in

1997 (Jezek 1999). The raw SAR data were processed at the Alaska SAR Facility

into four-look intensity images. The SAR imagery has experienced a rigorous

Figure 7. Tracing and vectorizing edge pixels (grey cells): (a) seven possible tracing direc-
tions, prioritized in 1, 2, …, 7 order; and (b) vectorized coastline.

(15)
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geocoding and orthorectification process with well-distributed ground control

points and mathematical modelling of imaging geometry at Byrd Polar Research

Center (Jezek 1999) and therefore provides a planimetrically accurate image basis

for our algorithms. The Polar Stereographic map projection was selected for the

geocoding process. By applying our method to the SAR images, we have

successfully extracted a complete, high-resolution coastline for the entire Antarctic

continent.

Figure 8 illustrates the processing sequence applied to a SAR image with 100 m

resolution. It is located along the Pennell Coast of Northern Victoria Land,

Antarctica. The image has 409664096 pixels, covering an area of 409.6 km6409.6 km.

First, a 565 Lee filter is applied, and then the anisotropic diffusion operator is

applied to the SAR image. After applying the Lee filter and anisotropic diffusion

operator, the image noise and speckle is considerably reduced, intensity variations

and weak edges inside the land or the ocean are effectively suppressed, and the

coastline edges are enhanced.

The entire image is divided into overlapping image regions, each with 32632

pixels. Twenty per cent of image regions that have a high variance are selected for

analytically determining optimal local thresholds. By integrating the Canny edge

detector and the Levenberg-Marquardt method, the five bimodal Gaussian

parameters are iteratively fitted. For most image regions, the convergence is

achieved within 4–7 iterations. The optimal local thresholds for these regions are

interpolated throughout the entire image. The entire image is subsequently

segmented using the locally adaptive threshold. The segmented image is shown in

figure 8(b).

At the post-segmentation processing stage, the water pixels in the segmented

image are first grouped and labelled into individual image objects, and the resulting

small image objects are removed, as shown in figure 8(c). Then, the ice/land pixels

are grouped and labelled into individual image objects, and those small image

objects are removed as shown in figure 8(d ). After two passes of selective removal

of small noisy image objects, only true continuous land and ocean image objects are

left. The extracted coastline pixels are then traced, and their coordinates are

recorded as a vector-based ArcInfo Ungenerate file. Finally, a vector coverage of

the coastline is created in ArcInfo format. To gain an appreciation of the precision

of the algorithms, we display two enlarged portions of the derived coastline with the

original SAR image as backdrop. As shown in figure 8(e) and (f ), subtle coastal

features, such as small inlets and ice tongues, are accurately delineated. The visual

examination shows that the extracted coastlines closely match those obtained from

human interpretation of the original images. The average accuracy of coastline

position is down to one pixel. Due to the rigorous orthorectification of the source

SAR imagery, our assessment shows that the absolute accuracy of the geographical

position of the derived coastline is better than 130 m.

During the systematic processing of radar images for Antarctica, some

Figure 8. Automated coastline extraction from Radarsat SAR imagery (100 m): (a)
extracted coastline draped on the original SAR image; (b) segmented image using
locally adaptive thresholding method; (c) after applying image region grouping and
removing small objects that are classified as water objects; (d ) after applying image
region grouping and removing small objects that are classified as land/ice objects; (e)
coastline draped on the enlarged SAR image; and ( f ) two delineation errors are
marked at the locations A and B.
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delineation errors were detected for our automated method. Radar imagery is not

affected by clouds or darkness, making it ideal for coastline detection in polar

regions. Nevertheless, difficulties and problems remain (Lee and Jurkevich 1990,

Mason and Davenport 1996). In the case of Antarctica, the presence of sea ice, fast

ice, icebergs and wet snow zones in the coastal regions complicates the coastline

detection and extraction. For instance, when a large floating sea ice was directly

attached to the ice and snow covered land area, the extracted coastline mistakenly

extruded out into the ocean. Such an example is shown at location A in figure 8(f ).

When a rock exposure area or a very smooth glacial floor extends to the ocean

water, the tracing was misled into the inland area to form artificial inlets or false

openings along the coastline. Such an example is shown at location B in figure 8(f ).

These errors are fixed in an ArcInfo GIS environment. With the ArcInfo graphic

display tools, the vector-based coastline coverage is displayed on top of the original

source satellite image. The quality of the derived coastline is inspected and verified

with the zoom-in, zoom-out and pan tools. With the graphic editing tools of

ArcInfo, incorrect coastline segments can be deleted and new ones can be inserted.

6.2. Extracting the coastline of the Gulf of Mexico from Landsat 7 ETMz images

Another example demonstrates the applicability of our coastline extraction

method to optical satellite images. The input image is a Landsat 7 Enhanced

Thematic Mapper Plus (ETMz) image over the Galveston Bay of the Gulf of

Mexico, near Houston, Texas. The infrared channel (band 5) of the image is used

for the processing (figure 8(a)). The image has 708867545 pixels with 30 m spatial

resolution and has been georeferenced to the UTM map projection. A 565

Gaussian filter, instead of Lee filter, is applied to the infrared image. For the post-

segmentation processing, a small threshold is used to remove small, spurious image

objects after the grouping and labelling operation. Islands and lakes with a

relatively large size are kept. Other processing steps and parameter settings are

similar to those used for processing the radar images. As shown in figure 9,

peninsulas, small inlets, islands, lakes, reservoirs, rivers and piers in the reservoirs

are precisely marked out. An excellent match of the extracted coastline with the

original image substantiates the applicability of our method to optical satellite

images for coastline detection and delineation.

7. Discussion and conclusions

Coastline mapping seems to be a simple application of remote sensing data, but

in practice automated extraction of the land/water boundaries is more difficult than

one would expect. Because of the frequent lack of consistent, sufficient intensity

contrast between land and water regions and the complications of distinguishing

coastline from other object boundaries, coastline extraction is a difficult task with

most general-purpose edge detectors or image segmentation techniques. In this

research, we present a comprehensive technique for automating coastline extraction

Figure 9. Automated coastline extraction from Landsat 7 ETMz image (band 5, 30 m): (a)
extracted coastline draped on the entire original Landsat image; (b) segmented image
for the enlarged area b using locally adaptive thresholding method; (c) after applying
image region grouping and removing small objects that are classified as water objects;
(d ) after applying image region grouping and removing small objects that are
classified as land objects; (e) coastline draped on the enlarged area b; and ( f )
coastline draped on the enlarged area f.
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(a) (b)

(c) (d )

(e) ( f )
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from satellite imagery. Our method consists of a sequence of image processing

algorithms written in the C language.

The crucial step governing the positional accuracy of the extracted coastline is

image segmentation. The accuracy of the image segmentation, in turn, depends
upon the reliability and correctness of the local threshold analytically determined

by fitting a bimodal Gaussian curve. This research has made several technical

innovations to improve the accuracy and efficiency of the algorithms for achieving a

reliable, optimal threshold. The Levenberg-Marquardt method is introduced for the

first time for iteratively fitting a nonlinear bimodal Gaussian curve to analytically

determine optimal local thresholds. The Canny edge detector is integrated into the

Gaussian curve approximation process. The removal of mixed pixels from the

formation of observed histogram and the estimation of the initial values of bimodal
Gaussian parameters based on the edge pixels and their immediate neighbourhood

have greatly increased the quality of the Gaussian parameter estimations and also

accelerated the convergence rate of the iterative fitting process. This in turn

improves the accuracy and efficiency of local threshold computation.

The underlying assumption for the locally adaptive thresholding algorithm is

that a small image region that contains a coastline can be characterized by a

mixture of two Gaussian distributions. Since thresholds are determined analytically

according to local, rather than global, characteristics of the observed histograms,
they account for changing geophysical characteristics along lengthy reaches of the

coastline. As a result, our method generated the coastline with a high accuracy,

approaching the spatial resolution of the imagery.

A series of post-segmentation processing steps greatly automated the extraction

of vector-based coastline and minimized the manual editing of the final vector

products. Particularly, grouping and labelling image regions into individual image

objects enable us to utilize heuristic human knowledge about the size and continuity

of land and ocean masses and hence to eliminate object boundaries other than true

coastline. The vectorized coastline products can be viewed and further edited in a
GIS environment with reference to the original satellite images. The batch

processing of the Radarsat SAR images for Antarctic coastline demonstrates that

our method can significantly remove the burden of conventional manual delineation

and achieve a high positional accuracy of the coastline that is difficult for the

human ‘on-screen’ digitization method.

Despite the successful applications of our method on both radar and optical

satellite images, it should be noted that the quality of the image sources remains an

important factor for coastline extraction. The success of our method still depends
upon whether considerable contrast exists between water and land masses. To a

lesser degree it also depends on the homogeneity of the water or land mass. During

the systematic processing of radar images for Antarctica, we detected some

delineation errors. These errors can be easily corrected in a GIS environment by

deleting incorrect coastline segments and/or inserting new ones with graphic editing

tools. In addition, the GIS-based editing tools are also used for merging the

coastlines extracted from adjacent image tiles.

The relative accuracy is evaluated in this research based on the comparison
between the algorithm derived coastline and the coastline visually interpreted from

the original satellite images. Extensive visual comparison shows that the relative

accuracy of the algorithm-derived coastline is within one image pixel, compared

with the human visual interpretation of the coastline features. In a real-world

application, the absolute accuracy of the geographical position of the derived
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coastline is essential. It should be emphasized that the absolute accuracy is

influenced not only by the coastline extraction method, but also by the geo-

referencing accuracy of the source images. To derive a coastline with precise

absolute geographical coordinates and correct geometric shape, the source images

used to extract the coastline must be geocoded and orthorectified before applying

our coastline extraction algorithms.

Although our coastline delineation algorithms are operational and effective,

some further enhancements could be made in a future version. For example, we

only utilized the size and continuity of the image objects identified by the grouping

and labelling operation for the purpose of differentiating the true coastline from

other object boundaries. Other attributes of the image objects, such as shape,

texture and relative position, can also be used in the post-segmentation processing

for determining the true water/land boundaries. The results could probably be

improved at the expense of a slightly increased computation.
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