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ABSTRACT 

 

    The newly discovered East Antarctic Ice Streams drain a significant portion of the 

Antarctic Ice Sheet.  Therefore, changes in their flow behavior can significantly alter ice-

sheet mass-balance and influence global sea level. This dissertation research created the 

most comprehensive measurements to date of surface velocity across the East Antarctic 

Ice Streams using RADARSAT-1 interferometric synthetic aperture radar (InSAR) data 

acquired in 1997. Two-dimensional surface velocity was derived by combined 

interferometric and speckle matching techniques.  Improvements in both techniques 

mediated some of the unique problems and limitations associated with imaging the 

Antarctic Ice Sheet using RADARSAT-1. The improvements included Delaunay 

triangulation based co-registration of SAR images, phase reconciliation of disconnected 

phase patches, and two-dimensional velocity calibration using extended velocity control 

points. The research produced a highly dense, highly accurate, two-dimensional surface 

velocity map of the East Antarctic Ice Streams, and a by-product coherence map 

reflecting surface changes. The velocity uncertainty is better than 15 m/year and velocity 

direction error is within 5° on the ice shelf and ice streams.  Ice-stream shear-margins 

were mapped based on the SAR mosaic, velocity map and coherence map.  Comparison 

between ice stream margins and BEDMAP subglacial topography suggests that ice 

stream flow is controlled by bedrock topography.  Mass balance calculations indicate that 
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the ice stream and Filchner Ice Shelf system is not significantly thinning or thickening.  

There is evidence to suggest that at least one of the individual ice streams (Bailey 

Glacier) is thickening at a rate of 0.25±0.06 m per year.  Ice stream surfaces are generally 

convex and Slessor Glacier and Bailey Ice Stream driving stresses are large compared to 

the concave shaped West Antarctic Ice Streams.  The surface topography of Recovery 

Glacier varies the most from an equilibrium profile and stretches of the Recovery Glacier 

have low driving stress, suggestive of flow on a lubricated bed.  The convexity of the 

surface profiles, high driving stress, evidence of streaming flow and the shape of the 

glacier bed suggest that a change in ice stream dynamics could potentially result in an 

imbalanced discharge of large amounts of ice into the sea.    
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

        The Antarctic Ice Sheet contains about 77% of the total fresh-water resources on the 

earth. It plays a very important role in global climate by modulating surface energy 

budgets, controlling atmospheric circulation and serving as a reservoir of vast amounts of 

water (Hughes, 1975; Mercer, 1978; Bindschadler, 1991; Rott and others, 1996).  The 

latter is particularly important because changes in the reservoir are directly related to sea 

level change. If the Antarctic Ice Sheet melts completely, global sea level will rise some 

68 m (IPCC, 1996).The East Antarctic Ice Streams, along with the West Antarctic Ice 

Streams and the Lambert Glacier, drain a significant portion of the Antarctic Ice Sheet 

(Drewry and others, 1982).  Therefore, changes in their flow behavior can significantly 

alter the ice sheet’s mass balance. In 1997, the Radarsat Antarctic Mapping Project 

(RAMP) produced the first ever continental-scale, high-resolution snapshot of the 

Antarctic Ice Streams (Jezek and others, 1998). The 30-day mission also generated 

interferometric data over portions of the continent, including the East Antarctic Ice 

Streams. These interferometric data provide an unparalleled opportunity to study the 

dynamics of the East Antarctic Ice Streams. 
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    Synthetic Aperture Radar Interferometry (InSAR) is a well-demonstrated technique 

for measuring ice sheet surface velocity.  It can provide a broad-scale, dense spatial 

coverage with excellent accuracy. Starting with the pioneering work of Goldstein and 

others (1993), several investigators have shown the utility of radar interferometry-derived 

velocities in glacier mass balance and dynamical studies (Joughin and others, 1996; 

Kwok and Fahnestock, 1996;  Rignot and others, 1995; Forster and others, 1999). 

However, the differential InSAR technique only produces one component of surface 

motion in the radar look direction, and fails in fast moving glacier regions due to the low 

coherence. As a complement to the InSAR technique, a speckle matching technique 

(Gray and others, 1998) can produce two components of motion even for fast moving 

glaciers, but the measurement accuracy is limited by the size of the resolution cell. 

    There are unresolved complications in applying the InSAR technique to Antarctica.  

First, temporal decorrelation and co-registration decorrelation limit the use of phase 

information for range motion calculations. In this research, the coherence is improved by 

a new co-registration technique that can handle the large and irregular geometric 

distortion of the ice sheet between SAR observations due to surface motion. Also regions 

of unwrapped fringes separated by temporally decorrelated channels are merged  into one 

large region with the same reference using the range offset from speckle matching. 

Second, velocity estimation requires ground control points with known velocity. In the 

East Antarctic, it is impossible to satisfy its requirements for every frame of InSAR data. 

In this research, in addition to traditional velocity control points, we explored flow 

directions as supplement to velocity control points.      
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1.2 Research Scope and Objectives 

    The three objectives of this dissertation research are: (1) to explore technical 

methods and algorithms that are suitable for two-dimensional surface-velocity estimation 

from RADARSAT interferometry data over the East Antarctic Ice Streams; (2) to process 

the data and produce the first ever surface velocity and coherence maps for the East 

Antarctic Ice Streams; and (3) to study East Antarctic Ice Streams ice dynamic and mass 

balance based on the surface velocity map, coherence map, as well as other existing data 

of the region. The first objective requires examining the interferometry and speckle 

matching techniques that are already used in ice motion estimation, and examining the 

limitations of those techniques for processing RADARSAT InSAR data over the East 

Antarctic Ice Streams. These limitations are partially due to the long repeat cycle of 

RADARSAT (24 days) and the fast movement of the East Antarctic Ice Streams. New 

methods and algorithms are explored that can overcome these limitations and produce 

two-dimensional surface velocity maps using RADARSAT InSAR data of the East 

Antarctic Ice Streams. Methods for co-registration, phase reconciliation, and velocity 

calibration will be developed. The second objective focuses more on data processing to 

produce velocity and coherence maps.  The third objective targets the scientific analysis 

of the East Antarctic Ice Stream dynamics. The flow pattern of the East Antarctic Ice 

Streams is identified. The ice dynamics is investigated by comparing longitudinal and 

transect profiles of various glaciers and by comparing ice flow with subglacier 

topography. The mass distribution and mass balance of East Antarctic Ice Streams is 

calculated. In particular we answer the question: are the East Antarctic Ice Streams a 

potential mechanism for rapidly draining large amounts of ice from the interior ice sheet? 
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1.3 Summary of Chapters  

    Chapter 1 presents background materials, research scope and objectives.  

    Chapter 2 reviews the principle of the SAR interferometry technique. 

Interferometric processing and applications with emphasis on surface motion estimation 

are then discussed. Problems and limitations of the interferometry technique are 

identified for applications to the East Antarctic Ice Streams. 

    Chapter 3 describes the Speckle Matching technique that can generate surface 

motion in two dimensions. Matching methods, velocity calibration, and error analysis are 

discussed. A comparison is also made between interferometry and speckle matching 

techniques. 

    Chapter 4 focuses on co-registration decorrelation due to the long temporal baseline 

and fast moving glaciers. This chapter provides a theoretical analysis of co-registration 

decorrelation, then introduces the Delaunay-triangulation-based co-registration method. 

The technique is used to create a better coherence map of the East Antarctic Ice Streams 

and more accurate phase estimation. 

    Chapter 5 deals with phase unwrapping and establishing a reference phase for 

coherent sectors of image frames devoid of velocity control points. The well-established 

phase unwrapping algorithms are first reviewed. Then a phase reconciliation method is 

introduced that can align all independently unwrapped pieces (patches) to a uniform 

reference with the help of a range offset map from speckle matching. The error analysis 

and examples are presented in the chapter. 
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    Chapter 6 explores methods to generate two-dimensional surface velocity by 

combining interferometry and speckle matching techniques. Extended velocity control 

points for velocity calibration are discussed. Models are developed for velocity 

registration and baseline refinement using the extended velocity control point types. 

Processing tools and processing procedures for producing a surface velocity map of the 

East Antarctic Ice Streams are described. Accuracy and quality assessment of the velocity 

map are also discussed. 

    Chapter 7 presents the scientific analysis of the East Antarctic Ice Streams. Based 

on the surface velocity map, the coherence map, and the SAR intensity map, the 

boundaries of the East Antarctic Ice Streams are identified. The margin map is compared 

with BEDMAP subglacial topography to understand the influence of subglacial 

topography on ice flow. Longitudinal profiles for the Bailey, Slessor, and Recovery 

glaciers are analyzed and compared. Recovery Glacier’s twin RAMP Glacier and 

Blackwall Ice Stream are compared. Finally, the mass distribution and mass balance of 

the East Antarctic Ice Streams are calculated and analyzed.  

    Chapter 8 summarizes the research findings and draws conclusions from the 

research.  
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CHAPTER 2 

 

INTERFEROMETRY TECHNIQUE 

 

2.1 Introduction 

The first interferometric measurement of earth surface elevation was made by 

Graham (1974) using airborne SAR. He estimated the surface elevation by coherent 

addition of two SAR images acquired by two antennas mounted one above the other on 

single- looking movable gimbals.  Zebker and Goldstein (1986) first used the correlated 

phase of two complex images acquired by two separated antennas to generate surface 

topography.  Since the launch of the European satellite ERS-1 in the early 1990s, more 

spaceborne and repeat orbit interferometric SAR data have been available, and the 

interferometric techniques and applications have been well developed. In addition to 

topography generation, Gabriel and others (1989) demonstrated that the interferometric 

technique could be used to detect surface motion in the range direction with known 

topography.  Double difference interferometry, a generalized interferometric technique 

(Joughin and others, 1996b; Kwok and others, 1996;  Fatland, 1998) can be used to 

separate topography and surface motion for ice streams where both topography and 

surface motion have an effect on the phase difference. 
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This chapter presents a brief review of the well-developed interferometric 

technique, which serves as the basis for the present research. First, the basic theory of the 

interferometric technique is reviewed. Then the processing methods of the technique are 

described. Last, the applications of the technique with emphasis on surface motion 

estimation are discussed. Concepts, notation, and equations established in this chapter 

will be used in later chapters. 

 

2.2 Basic principle of SAR interferometry 

2.2.1 Geometry 

 SAR interferometry is performed by imaging radar, an active illumination system. 

In the system, a radar signal is transmitted in a side look direction to the ground from an 

antenna on an aircraft or spacecraft, then scattered back and received by the antenna. The 

receiver records the amplitude A of the returned signal, as well as the phase shift φ.  

When two spatially-separated antennas view the same ground surface or the same 

antenna repeatedly views the same ground surface, two SAR images are acquired. The 

correlated phase difference reflects the combined effect of SAR geometry, surface 

elevation and surface motion.  

    The simple InSAR geometry is illustrated in Figure 2.1 in which the notations are 

the same as used in Joughin (1995). Assume that the earth model is flat, and point P does 

not move during the two observations. In the figure, S1 and S2 are two separate antennas, 

or a single antenna viewing the surface on two separate passes.  The ground point P has 

elevation z. Ground distance to the satellite nadir in the range direction is y.  The first 

observation has height H, and look angle θ, with range distance from the first antenna to 
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the surface point P being r0. The two antennas have baseline B and tilt angle ξ with 

respect to the horizontal. The range distance from the second satellite to the ground P is 

r0+∆. From the geometry, the ground position of P can be written as 

θsin0ry =                                              (2.1) 

θcos0rHz −=                                           (2.2) 

Applying the law of cosines to triangle S1S2P, yields 

)
2

cos(2)( 0
22

0
2

0 ξθ
π

+−−+=∆+ BrBrr                                

    )sin(2 0
22

0 ξθ −−+= BrBr                                 (2.3) 

Then we have  

Br
rBr

0

2
0

22
0

2
)(

)sin(
∆+−+

=− ξθ                                                     (2.4) 

Combining (2.1), (2.2) and (2.4), y and z are calculated as 

)cos(0 ξξθ +−−= rHz                                 

             ]sin)sin(cos)[cos(0 ξξθξξθ −−−−= rH                                 

             ]sin)sin()(sin1[cos 2
0 ξξθξθξ −−−−−= rH                             (2.5) 

and  

         )sin(0 ξξθ +−= ry                                 

            ]sin)cos(cos)[sin(0 ξξθξξθ −+−= r                                 

      ])(sin1sincos)[sin( 2
0 ξθξξξθ −−+−= r                                       (2.6) 
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Fig. 2.1:  Geometry of cross-track interferometric SAR.  The SAR sensor is flying
parallel to the X-axis (azimuth direction).  The baseline B is determined by the sensor
orbital positions S1 and S2 of two repeat passes.  The baseline orientation is defined by
the angle between the baseline and a horizontal line.
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The above equations estimate the earth surface elevation z and ground range position y 

using the satellite parameters: satellite height (H), look angle (θ), baseline (B) and 

baseline angle (ξ), as well as measured range r0 and r0+∆ from the first and second 

satellite positions to the ground point P, respectively. These parameters are known. So the 

ground positions y and z can be solved to the accuracy of these observations. 

    The range difference ∆ is the difference of the two sides S2P and S1P in the triangle 

S1S2P. From the geometry, changing the elevation will change the shape of the triangle. 

Changing the baseline distance and/or the baseline angle will also change the triangle. So 

the baseline and the topography will affect the range difference.  

    When repeat-pass InSAR is used and surface motion occurs during the two passes, 

the range difference is also affected by the surface motion. The range difference due to 

the surface notion is 

)sin())(90cos( αθαθ +⋅=+−⋅=∆ ddmotion                                    (2.7) 

where d is surface displacement on the ground in the cross-track direction, α is the 

surface slope in the range direction, and θ is the incidence angle (same as look angle 

here). 

    Joughin (1995) expresses surface displacement using the changes in the y and z 

direction as 

θθ cos)(sin)( 1212 zzyymotion −−−=∆                                    (2.8) 

where y1, z1 are the target positions defined in Figure 2.1 at the first pass observation, and 

y2, z2 are the position of the same target at the second pass observation. 
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2.2.2 Phase measurement  

    The range difference, whether caused by topography, or surface displacement, or 

both, can be measured by the normal range resolution of SAR. The accuracy of this 

measurement is limited by the pixel resolution (several meters) and is far too inaccurate 

to detect topography or surface motion. The most interesting thing in interferometric 

SAR is using phase to measure the range difference.  The accuracy of the phase 

measurement is a fraction of the wavelength, which is a few centimeters for C-band 

radar. 

     For a distributed target, pixel (i,j) in two complex SAR images can be represented 

as (Rodriguez and Martin, 1992): 

1),(),( 11
φjejiAjis =                  (2.9) 

)2,
4

mod( 11 πρ
λ
π

φ =                 (2.10) 

2),(),( 22
φjejiAjis =                  (2.11) 

)2,
4

mod( 22 πρ
λ
π

φ =                  (2.12) 

where ),(1 jis  and ),(2 jis  are complex values of the SAR image pixels at (i,j); A1(i.j) and 

A2(i,j) are the terrain reflectivity (backscattering) of the two images; ρ1 and ρ2 are the 

ranges respectively from successive antenna positions S1 and S2 to the ground resolution 

element P(x,y,z) associated with image pixel (i,j); λ is the radar wavelength; φ1 and φ2 are 

the phases of the returned radar signal in two images. Then, the two complex images s1 

and s2 can be interfered with each other by conjugate multiplication to form a complex 

interferogram.  A pixel in the interferogram can be expressed as 
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)21(

2121 ),(),(),(),( φφ −∗ =⋅ ejiAjiAjisjis        (2.13) 

The phase difference of the two complex images, φ1-φ2 , is related to the range shift ρ1-ρ2. 

Although  φ1 and φ2 are uniformly distributed, their difference is no longer uniformly 

distributed, if the two complex images are correlated. With good coherence, an 

interferogram pixel with phase φ can infer the range difference 

           )2(
412 φπ

π
λ

ρρ +=−=∆ n               (2.14) 

Because φ is modulo 2π , there is an integer uncertainty in the absolute phase. Phase 

unwrapping converts the wrapped phase to an unwrapped phase, with only one integer 

uncertainty for all pixels. This integer then is determined from a single ground control 

point. Absolute and unwrapped phase have a constant difference for all pixels. Assume Φ 

is the absolute phase and φ represents the wrapped phase before phase unwrapping. Then 

their relationship is  

φπ +=Φ n2                   (2.15) 

and the range shift is  

Φ=∆
π
λ

4
                    (2.16) 

The phase measurement has a relative accuracy as good as a fraction of wavelength 

(Rodriguez and Martin, 1992). The absolute accuracy of the phase depends on the control 

points. Errors in control points directly propagate to the phase measurement. We will 

discuss this later. 
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2.2.3 Phase separation 

    For repeat-pass interferometry, the unwrapped phase is related to baseline, DEM, 

and surface motion.  So the absolute phase Φ can be expressed as the sum of the phases 

due to these individual contributions. 

motionDEMbaseline Φ+Φ+Φ=Φ               (2.17) 

These individual components can be approximated as (Fatland, 1998) 

ϑtan
2

r
kBn

baseline =Φ                      (2.18) 

         
ϑsin

2
r

HkBn
DEM =Φ                     (2.19) 

         ϑsin2kVTmotion =Φ                      (2.20) 

where Bn is the perpendicular baseline, k=2π/λ, λ is the radar wavelength, r is the 

distance from satellite to the scene center, θ is the look angle, V is the surface velocity on 

the ground in the cross track direction, and T is the time interval between the two passes.  

    Both the baseline phase and the DEM phase are linearly proportional to the 

perpendicular baseline Bn. The DEM phase is also linearly proportional to elevation. The 

motion phase is related to the surface velocity and the look angle.  

    Among the three phase components, the baseline phase is always calculable when 

the baseline and satellite parameters are known. The DEM and motion phase remain as a 

sum and so the problem is how to separate these two components. If we know one 

component, then we can estimate the other component by subtracting the known 

component from the measured phase. Some example combinations follows: 
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1. No surface motion. Φmotion=0. Then the DEM phase ΦDEM=Φ-Φbaseline. The 

topography can be estimated from the measured phase. 

2. Known surface topography, DEM phase ΦDEM can be simulated from the topography 

and the satellite orbit parameters. Then the motion phase Φmotion=Φ-Φbaseline-ΦDEM. 

Surface motion can be estimated from the measured phase. 

3. Baseline B=0. Then the DEM phase ΦDEM=0, and the baseline phase Φbaseline=0. The 

motion phase is the measured phase.  Φmotion=Φ. This case very rarely happens. But 

when the baseline is near zero, the effect of topography is negligible and can be 

ignored (Goldstein and others, 1993; Joughin and others, 1996b). 

4. Given two interferograms with the same repeat interval and different baselines, the 

motion phase can be canceled and topography can be calculated from the difference 

of the two baselines. Then the topography phase can be removed to estimate the 

motion phase. This is called double difference imterferometry. The assumption for 

this application is that the surface motion is constant for the two repeat intervals. This 

assumption is valid for most ice sheet applications, unless there is a glacier surge or 

some radical dynamic change. 

5. Given two interferograms with the same baseline but different repeat intervals, then 

the topography phase can be canceled and the motion phase is the difference of the 

two measured phases. Once the motion phase is estimated, we can remove it from the 

measured phase to estimate topography. This is another kind of double difference 

interferometry. 
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2.3 SAR interferometry processing 

2.3.1 Processing overview 

    SAR interferometric processing procedures vary with applications and available 

data. Applications could be elevation extraction or surface motion estimation. Data may 

be two-cycle data or three-cycle data. Nevertheless, there are some standard procedures 

for all cases. They are single complex image (SLC) co-registration, interferogram 

formation, phase unwrapping, baseline refinement, and image geocoding. In this section, 

the basic procedures that apply to all applications will be discussed. Application-

dependent procedures will be discussed in the next section. A detailed discussion of 

interferometric processing methods can also be found in Joughin (1995). 

 

2.3.2 SLC images co-registration 

    SLC co-registration is the first step in InSAR processing. To generate an 

interferogram, two SLC images taken from the two passes must be co-registered so that 

the same pixel position in the two images reflects the same ground patch. If two images 

are not properly registered, co-registration decorrelation occurs. SLC co-registration is 

the process of resampling the second SLC image into the same geometry as the first SLC 

image. The process involves geometry mapping and radiometric interpolation.  Geometry 

mapping creates a pixel relationship between the two SLC images with sub-pixel 

accuracy. Radiometric interpolation creates a resampled SLC image of the second image 

based on the geometry mapping. 

    Geometry mapping starts with tie point matching between points regularly defined 

in the first image and their conjugate points in the second image. The matching results are 



 16 

range offsets and azimuth offsets of the tie points. There are magnitude-based matching 

methods and phase-based methods (Gabriel and others, 1988). Sub-pixel accuracy is 

achieved by a peak interpolation of the correlation function.  Since the speckle matching 

technique to be discussed in Chapter 3 uses the same tie-point matching idea, we will 

discuss the tie point matching methods, peak interpolation methods, and matching 

accuracy in detail in Chapter 3. 

    Once the tie points are found, we need to create relationships between the first 

image position (x,y) and the second image position (x’,y’) written as  

),(' yxfx x=                   (2.21) 

),(' yxfy y=                   (2.22) 

where fx and fy are the geometric transformations for the range and azimuth directions 

from the first image to the second image. A commonly used geometric transformation is 

an affine transformation, which is a linear mapping from the first image to the second 

image. The affine transformation models are described as 

yaxaax 210' ++=                (2.23) 

ybxbby 210' ++=                 (2.24) 

For most applications, the affine transformation is adequate to achieve high quality 

interferograms. However, for application of RADARSAT InSAR over the East Antarctic, 

a long repeat cycle (24 days) and fast-moving glaciers make it impossible for an affine 

transformation to fit the range offset and azimuth offset in a linear model with acceptable 

error. For this research, a Delaunay triangulation based mapping method is used to 

establish a position relationship between images based on local tie points rather than 
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global tie points. The method improves the coherence and interferogram quality for fast 

moving areas. Delaunay triangulation based co-registration will be discussed in Chapter 4 

in detail.  

    Radiometric interpolation calculates complex pixel values at a non- integer positions 

(x’, y’) of the second image. According to sampling theory, if the SAR data are sampled 

at a frequency larger than the Nyquist frequency, the SAR data can be completely 

reconstructed from the values at discrete integer positions. Then the value at a non-

integer position can be calculated.  

    Assume x(t) is a continuos function, x(nT) are discrete samples at a sampling rate 

equal to or larger than the Nyquist rate, and T is the sampling interval, then the 

reconstructed function xr(x) can be expressed as the convolution of the sampling data 

with a sinc function of infinite extent ( Curlander and McDonough, 1991). 
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π              (2.25) 

Then the function value at a position t’=nT+δT, shifted away δT  from an integer position 

nT, can be calculated as  
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The interpolation is a convolution of the SAR image with a sinc function of infinite 

extent. In practice a truncated sinc function with finite size is used in data processing and 

errors are introduced. A larger size sinc function will decrease the error, but increase the 

computational complexity. 
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    Convolution can also be implemented in the frequency domain. First, the Fast 

Fourier Transform (FFT) of the data is computed. Then the result is multiplied by a 

complex exponential. The inverse transformation of the product yields the shifted result. 

The advantages of frequency implementation are the speed and the ability to filter data. 

In Vexcel’s software, the range and azimuth directions are processed separately. Since 

there are phase ramps in the range direction due to the baseline effect and a phase ramp in 

the azimuth direction due to the Doppler frequency, the phases must be shifted to zero 

center before interpolation and shifted back after interpolation. 

    Low pass filtering is also applied to the resampled image and to the master image to 

reduce decorrelation due to mismatch of Doppler centroids of the two orbits (Joughin, 

1995). The filter is designed to keep the common frequency and remove non-overlapping 

frequencies where there is no coherence (Bamler and others, 1993). Assume two orbits 

have Dopper centroid difference of 300 HZ, the SAR processor bandwidth is 900 for both 

orbits.The overlap bandwidth will then be 600HZ. For AMM-1 InSAR data over the East 

Antarctic Ice Streams, the overlap bandwidth is larger than half bandwidth of the 

processor. Table 2.1 lists Dopper centroids of two orbits and their difference.  

Frame Orbit 9822 
Dopp (Hz) 

Orbit 10165 
Dopp (Hz) 

Difference 
(Hz) 

5556 2853 3194 341 

5572 3015 3351 336 

5589 3191 3523 332 

5605 3317 3642 325 

5622 3490 3806 316 

 

Table 2.1 Doppler centroids and their difference for InSAR orbits 9822/10165 



 19 

 

2.3.3 Calculate interferogram 

Measured phase and coherence 

    After the two complex images are co-registered, the complex interferogram I,  a 

conjugate multiplication between the first complex image s1 and the second complex 

image s2, can be calculated as 

)21(
2121 ),(),(),(),(),( φφ −∗ =⋅= ejiAjiAjisjisjiI      (2.27) 

Here s1 filtered image and the s2 is filtered and resampled image. To reduce phase noise, 

the interferogram is multilook averaged. In this research, we use a 2 by 8 averaging. That 

means we average complex values of all pixels in a window of 2 pixels in the range 

direction and 8 pixels in the azimuth direction. The averaged interferogram has reduced 

resolution by 2 in range direction and by 8 in azimuth direction. The interferogram is 

expressed as complex data rather than phase data, since complex data have a better 

averaging performance than phase. It is also easier to subtract phase from complex data 

(Joughin, 1995).   

    Coherence, a quality indicator of the interferogram, is a normalized magnitude of 

the interferogram. If we assume a multilook averaging window is N by M, then the 

coherence γ can be calculated as  
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Baseline phase and topography phase 

    Baseline and topography contribute to a phase change in the interferogram. Their 

combined effect on the phase can be approximated as (Joughin and others, 1996b) 


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where θd is the difference between the look angle θ and the image center look angle θc, 

θd=θ-θc. Bn and Bp are the perpendicular baseline and parallel baseline respectively, the 

look angle of a point with elevation z can be expressed as (Olmsted, 1993) 
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If we assume the elevation, then the look angle ( eq. 2.30) becomes 
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The phase calculated from Equations 2.29 and 2.31 is called the baseline phase. Since it 

is a special case of topography with elevation z=0, the topography phase also refers to the 

phase including both the baseline and topography effect. We will use this convention in 

this dissertation unless indicated. 

 

2.3.4 Phase reconciliation 

    The measured interferometric phase from SAR images is wrapped into the interval 

(-π , π). There is a modulo-2π  ambiguity in the phase. To calculate surface motion or to 

estimate surface elevation, we have to remove the modulo-2π  ambiguity and convert the 

wrapped value into an unwrapped value.  
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    Many phase unwrapping algorithms have been developed (Goldstein and others , 

1988; Ghiglia and Romero, 1994; Xu and Cumming, 1999; Ghiglia and Pritt, 1998). 

These algorithms have limitations associated with data on fast moving glaciers. In this 

research, a phase reconciliation algorithm is developed to overcome such limitations after 

phase unwrapping. Detailed discussions of the new method with review of existing 

methods are presented in Chapter 5.  

 

2.3.5 Baseline refinement 

    The baseline can be calculated from the ephemeris data, but this information may be 

inaccurate. To refine a baseline, we need tie points of known elevations. These tie points 

are used in a least squares adjustment to estimate baseline parameters. The least squares 

equation for baseline refinement is given by Joughin (1995) as 
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where four unknown parameters are: 

 Bn
c:  Perpendicular baseline at frame center 

 Bp
c:  Parallel baseline at frame center 

 δBn : Gradient of perpendicular baseline change along flight track 

 Ωx : Azimuth phase ramp 

Other symbols are known values. Φunwrap is the unwrapped phase. B is the baseline from 

orbit information. ∆ is the range difference. x is azimuth position and xc is the azimuth 

position of the frame center. Lx is the azimuth length of the frame. θd is the look angle 

difference between the tie point and frame center. 
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    Equation (2.32) assumes stationary tie points. In Chapter 6, we will extend it to 

velocity control points that have a known velocity. Also, we will consider the azimuth 

direction offset in baseline refinement. 

 

2.3.6 Data geocoding 

    Image geocoding is a process of converting data in slant range coordinates into 

ground range coordinates with terrain correction. The data include SAR data, coherence 

data, interferogram data, velocity data, and so on. SAR interferometric processing is 

performed on slant range data. The final result should be mapped into a GIS environment 

in ground coordinates. In this research, we use an inverse process to do data geocoding. 

For example, we have velocity measured on a regular point grid in slant range 

coordinates. We then define a regular grid in ground coordinates. We use a SAR 

geometry model (Olmsted, 1993; Wivell and others, 1992) to find corresponding 

positions in the slant range coordinates. Then we assign data values (such as velocity or 

coherence) in slant range coordinates to points in ground coordinates. Interpolation is 

needed to pick a value from the slant range coordinates. We use this approach for 

creating the coherence and velocity mosaics. 

    SAR geocoding is the inverse of the SAR satellite model. It uses accurate satellite 

orbit information, sensor information, and a DEM to simulate slant range SAR image 

coordinates. For any given point on the ground with latitude, longitude and elevation, we 

will use the SAR model to calculate its position (i,j) on the slant range SAR image 

    To find SAR image position (i,j) for DEM point (X,Y,Z),  we use a variation of the 

inverse model developed by the USGS EROS Data Center (EDC) (Wivell and others, 
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1992). We simplify the problem by reducing the search root to one dimension, namely 

time t. For DEM point (X,Y,Z), we have a position on the earth’s surface in the form of 

(latitude, longitude, elevation), and its ECI (Earth Centered Interial) coordinates RT(t) at 

time t according to sidereal rotation. For the moving satellite, we can calculate the 

satellite position RS(t) at time t according to orbit ephemeris data. We can use a harmonic 

model to describe the satellite position vector RS(t), velocity vector VS(t), and velocity 

acceleration vector AS(t). Similarly, we can use a harmonic model to describe the target 

position vector RT(t) and velocity vector VT(t).  Given a time t, we can calculate the range 

R(t)=| RS(t)-RT(t)|. Then using range and azimuth sampling rates we can get an image 

position (i(t), j(y)). For the SAR model, we need to satisfy the Doppler frequency 

condition  

0)())(),(( =− tfyjtif DD                       (2.33) 

where fD(i(t),j(y)) is the calculated Doppler frequency at image position (i(t),j(t)) from 

SAR metadata, and  
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is the modeled Doppler frequency. 

    We use the Newton-Raphson iteration to interactively find a solution for time t                             
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    We can directly calculate ground position (X,Y,Z) from slant range image position 

(i,j) if we have a DEM model. For the slant range image position (i,j), the range position 

j defines a sphere whose center is at the satellite and the radius is the range of the pixel. 

Azimuth position i defines a Doppler cone whose axis is the line from the satellite to the 

target. The intersection curve of the cone and the sphere is the solution of ground 

positions whose image point is (i,j). If we have a DEM model, the intersection of the 

curve with the DEM surface will be a ground point (X,Y,Z) for slant range image 

position (i,j). Because the DEM is a discrete model, we use an iterative approach to find a 

solution. 

    Based on the four corner point coordinates of a slant range image frame, we can 

estimate the approximate ground position (X,Y) of a slant range image pixel (i,j). Then 

from the DEM we can find elevation Z for position (X,Y). We use the SAR simulation 

discussed above to find image position (i’,j’) for a ground position (X,Y,Z). The 

difference between the new image position (i’,j’) and target pixel position (i,j) yield the 

adjustment (∆X, ∆Y) on a ground position. The new ground position is X’=X+∆X, 

Y’=Y+∆Y, and Z’. The SAR simulation process is repeated until the new image position 

(i’, j’) is close to (i,j) within a threshold. In this case, the new ground (X’,Y’,Z’) is the 

ground position of image pixel (i,j). In our process, it takes less than 5 cycles to converge 

to the target pixel. This approach will be used to find an initial value for the tie point 

matching discussed in Chapter 3. 
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2.4 SAR interferometry applications  

2.4.1 Elevation estimation 

    The interferometric SAR (InSAR) technique has emerged as a precise approach to 

the extraction of high-resolution elevation data (Zebker and Goldstein, 1986; Rodriguez 

and Martin, 1992; Zebker and others 1994). For areas where there is no motion, the 

interferometric phase is caused only by topography and satellite geometry. From Figure 

2.1 geometry, the height of ground point (x,y,z) is expressed as 

]sin)sin()(sin1[cos)cos(),( 2
00 ξξθξθξθ −−−−−=−= rHrHyxz      (2.37) 

where H is the satellite height, r0 is the range of the first pass, ξ is the baseline angle, and 

θ is the look angle. The term sin(θ-ξ) can be determined by the range difference ∆, the 

range of the first pass r0 and baseline B in the following equation 
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The range difference ∆ can be calculated from an unwrapped phase Φ as 

Φ=∆
π
λ
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The elevation accuracy estimated from interferometric SAR depends on errors in the 

baseline B, range difference ∆, satellite height H, and the interferometric phase Φ. 

Elevation error related to the error of individual parameters is given by Rodriguez and 

Martin (1992) as 
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dHdzH =                                             (2.42) 
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    Among the errors, the phase error (dΦ) is a random error caused by thermal noise in 

SAR acquisition and other processing steps. The noise is independent from pixel to pixel 

and can be reduced by averaging. The standard deviation of phase noise σΦ is determined 

by the image coherence γ as (Hagberg and others 1995) 
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where N is the number of averaging pixels. Expanding (2.45) around 1-γ becomes 

N
γ

σ
−

≈Φ
1

                   (2.46) 

    Baseline, satellite height, and range distance introduce systematic errors. These 

errors introduce long wavelength errors in elevation. They may be removed by using 

more control points (Rodriguez and Martin, 1992). 

    It should be noted that the elevation error due to the baseline (Equation 2.40) and 

elevation error due to phase (Equation 2.44) are inversely proportional to baseline. It 

suggests that longer baseline reduces the sensitivity to the baseline error and phase error. 

However, as the baseline becomes longer, the baseline decorrelation increases the phase 

error. As a result, elevation error increases. So an optimal baseline must be chosen to 

balance all these factors.  
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    When repeat-pass interferometry is used to extract ice sheet elevation estimation, 

we have to consider ice motion. Ignoring ice motion in the process will cause a 

significant elevation error, because the elevation is so sensitive to phase. Assume that ice 

motion is 1 m/year, the perpendicular baseline is 200 m, the look angle is 35°, and the 

range distance is 900 km, then the elevation error will be as large as 97 m. If we know the 

surface velocity, we can remove the phase due to surface motion.  

    When more than two passes of SAR data are available, differential interferometry 

can be used to separate the topography component and surface motion component of 

phase by a double difference technique (Kwok and Fahnestock, 1996; Joughin and others, 

1996b). 

 

2.4.2 Surface motion estimation 

    With repeat-pass interferometry, the phase change due to surface motion can be 

extracted by subtracting the topographic related phase from the measured phase as in 

Equation (2.17) 

topographymotion Φ−Φ=Φ               (2.47) 

where Φtopography is used to represent the combined DEM and baseline effects. If we 

assume the surface velocity is constant between two observations of  period T, the 

surface velocity in the cross-track direction on the ground can be estimated as 

ψsin2kT
V motionΦ

=                   (2.48) 
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where Ψ is the incidence angle. Now we can estimate error budgets for surface velocity 

due to phase noise, elevation error, and baseline error. From (2.48), the velocity 

uncertainty σv due to random phase noise σΦ is 

Φ= σ
ψ

σ
sin2
1

kTv                 (2.49) 

The phase error σΦ due to DEM error σz is (Joughin and others 1996a) 
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where θc  is the look angle of the image center. Combining Equations (2.49) and (2.50), 

the velocity error σv due to elevation error σz is  
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and ψ is the incidence angle. The baseline effect on phase has an elevation-independent 

phase ramp. The phase error σΦ due to baseline error σBn is  
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Then velocity error σv due to baseline error σBn is  
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    Most InSAR applications on ice motion use the assumption of surface-parallel flow 

(Joughin and others, 1998; Mohr and others, 1998, Fatland and others, 1998, Gray and 

others, 2001). This assumption neglects the contribution to the vertical change of the 
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local balance such as snow accumulation. Reeh and others (1999), applying the principle 

of mass conservation, derived equation relating the vertical surface velocity to the 

horizontal velocity vector as well as surface balance. In this research, vertical change due 

to snow accumulation is 0.004 m for the research region during 24 days. It is negligible. 

    Random error for surface velocity is from phase noise. For typical data of this 

research, coherence value γ is around γ=0.4. Using multi look 2 by 8 averaging, phase 

noise is  σΦ=0.2 rad according to Equation 2.46. Using 27° for incidence angle,  the error 

in the cross track velocity is calculated from Equation 2.49 as σΦ=0.03 m/year. 

    The systematic errors are from baseline error. Baseline error can be mediated with 

ground control points (GCPs). So GCP errors propagate into the velocity errors. Jezek 

(1999b) analyze the systematic error for RADARSAT InSAR data. The systematic error 

is 3.5 m/year. Combining systematic error and random error, the cross track velocity error 

is better than 4 m/year. In the later discussion, we use 4 m/year as the velocity error from 

the interferometry technique. 

  

2.4.3 Double difference interferometry 

Estimate topography 

    We assume the surface velocity is consistent. Then the two interferograms contain 

the same surface motion phase. The motion phase can be canceled by differencing two 

interferograms. Assume Φ1 is the first interferogram after the baseline phase ramp has 

been removed. Φ1 can be expressed as an elevation-dependent term and motion term 

∆+
−

=Φ kz
r

kB
2

sin
2 1

1 θ
                 (2.54) 
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Similarly, we have an equation for the second interferogram 

∆+
−

=Φ kz
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2
sin
2 2

2 θρ
                 (2.55) 

Differencing Equations (2.54) and (2.55) yields 

  z
r

BBk
θsin

)(2 21
21

−−=Φ−Φ               (2.56) 

    Equation (2.56) suggests that the new interferogram Φ1-Φ2 is a formation of 

topography-only with baseline B1-B2. Once the topography is determined, it can be 

substituted into  (2.54) or (2.55), and surface motion can be estimated. 

    As discussed before, in a single interferogram, a larger baseline is better for 

elevation extraction and a smaller baseline is better for motion estimation. In the double 

difference case, two larger baselines B1 and B2 can’t guarantee larger baseline B1-B2 in 

the equation. So the optimal baseline selection in the double difference technique is that 

one baseline is larger, while the other one is small. Then the difference phase will be 

sensitive to the elevation, and the elevation accuracy will increase. The surface motion 

calculation uses Equation (2.54) or Equation (2.55), whichever has a smaller baseline. 

 

Estimate motion 

    Assume two interferograms have the same baseline. Then the topography phases in 

both interferograms are the same, and they can be canceled. Assume V is surface velocity 

and is constant during the observations, and T1 and T2 are time intervals of the two 

interferograms, the measured phase in both interferograms can be expressed as  
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Differencing Equations (2.57) and (2.58) yields 

  )(sin2 2121 TTkV −=Φ−Φ θ              (2.59) 

Since T1 and T2 are different, the surface velocity can be calculated as 

  
)(sin2 21

21

TTk
V

−
Φ−Φ

=
θ

                (2.60) 

Once motion has been estimated, we can substitute the motion phase into Equations 

(2.57) or (2.58), and the topography can be estimated. 
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CHAPTER 3 

 

SPECKLE MATCHING TECHNIQUE 

 

3.1 Introduction 

    Speckle matching (also called speckle tracking, or speckle correlation) uses a cross-

correlation matching technique to track surface motion from repeat-orbit InSAR image 

pairs (Gray and others, 1998). Speckle matching measures range offsets and azimuth 

offsets for a grid of points. The range offsets and azimuth offsets are then calibrated to 

calculate surface motion in the range and azimuth directions. The calibration  (or 

registration) of these offsets needs to remove topography and baseline effects. Control 

points are also needed in the calibration.  

    Cross-correlation has been successfully used in optical satellite imagery to track 

surface features for use in estimating motion on ice streams (Bindschadler and Scambos, 

1991). But the matching relies only on visible features like crevasses. On SAR images, 

speckle patterns are correlated. Speckle matching can track motion for almost any 

position on a SAR image. Procedures to estimate ice motion from speckle matching 

include two steps. First, we generate tie points by matching the speckle patterns between 

images. Second, tie points, or offsets, are calibrated to calculate surface motion. The first 

procedure is similar to that used in image co-registration. In this chapter, we review the 
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speckle matching methods. Velocity calibration is then discussed. Last, we compare the 

two methods of interferometry and speckle matching. 

 

3.2 Review of matching methods  

3.2.1 Cross-correlation 

    Cross-correlation is a magnitude based matching method. Figure 3.1 illustrates the 

matching scheme. For a point P in Image 1, we seek its conjugate point in Image 2. A 

template window of MxN pixels, in which point P is the center, is created in Image 1. A 

matching window of the same size in Image 2 is used to calculate the cross-correlation 

between the two windows. We move the matching window inside the searching window 

and calculate every cross-correlation factor between the template window and the 

matching window. 

  

 

 

 

 

 

 

 

 

Figure 3.1:  Cross-correlation matching  

 

Image 1 Image 2 

Template window 

Point P 

Searching window 

Matching window 

Matching point 
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The cross-correlation factor ρ of two windows is defined as (Schenk, 1999) 
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ρ =                     (3.1) 

Assume s1(i,j) is the magnitude value of the pixel (i,j) in the templa te window, s2(i,j) is 

magnitude value of the pixel (i,j) in the matching window in Image 2,  i and j are the 

relative pixel positions inside the windows,  then σ12,σ1, and σ2 have the following 

definition 
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    The correlation value ρ is between –1 and 1. ρ=1 indicates that the two windows are 

identical. If there is no similarity at all between them, then ρ=0. 
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3.2.2 Sub-pixel accuracy calculation 

    Cross-correlation matching finds a maximum correlation at an integer position. We 

need a sub-pixel interpolation method to find the sub-pixel offset in the range and 

azimuth direction. Assume (i, j) is the position in Image 2 that has the largest correlation 

ρ(i,j), then nine correlation factors shown in Figure 3.2 will be used to calculate the sub-

pixel position.  

   

ρ(i-1,j-1) ρ(i,j-1) ρ(i+1,j-1) 

ρ(i-1,j) ρ(i,j) ρ(i+1,j) 

ρ(i-1,j+1) ρ(i,j+1) ρ(i+1,j+1) 

 

Figure 3.2: Maximum correlation and its 8 neighbors 

 

    Based on the 3x3 matrix, the real maximum position can be calculated using 

methods such as surface fitting, parabolic fitting, and the barycenter method.  

 

Surface fitting 

    Define a second order polynomial surface as 

feydxcxybyaxyxF +++++= 22),(                         (3.7) 

where a,b,c,d,e, and f are surface parameters. These six parameters can be solved using 

least squares by creating nine equations from the known correlation factors. Then the 

maximum F is reached at position (x,y) which  satisfies 
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(3.8) and (3.9) yield solutions  
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Parabolic fitting 

    In parabolic fitting, we calculate the sub-pixel peak in the range and azimuth 

directions separately. Three points ρ(i-1,j), ρ(i,j), and ρ(i+1,j) are used to calculate the 

range direction offset x as 
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Similarly, azimuth direction offset is calculated using three points ρ(i,j-1), ρ(i,j), and 

ρ(i,j+1) as  
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Barycenter method 

    Consider the sub-pixel position as the barycenter of correlation. The range offset, x 

and azimuth offset, y can be expresses as a weighted averages (Michel and others, 1999) 
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    We tested the three methods and found that they agree to within 0.05 pixels. The 

surface fitting method, which calculates in a two-dimensional space is slower than the 

other two methods, which processes in a one-dimension space. Since the correlation is 

separable in the range and azimuth direction (Joughin, 1995), two one-dimensional 

calculations can result in a peak of two-dimensional and the calculation is fast. 

 

3.2.3 Accuracy and complexity of matching 

    Random error in cross-correlation speckle matching is derived by Bamler (1999) as  
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γ
σ

−
=                                      (3.16) 

where σx,y is the standard deviation of the range or azimuth offset estimate (unit: pixel), 

N is the number of pixels in the matching window, γ  is the coherence of the 

interferometric data pair, and osf  is the oversampling factor of the data.  For typical data 

sets, assume N is 4096, coherence γ  is 0.3, and the oversampling factor is 1 (no 

oversampling), then the uncertainty of the cross-correlation matching is 0.02 pixel.  Such 
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0.02 pixel uncertainty corresponds to a velocity error of about 2 m/year in the azimuth 

direction and about 6 m/year in the cross track direction for RADARSAT standard radar 

beams. We will use these numbers in later error budget discussion. 

    Systematic error is observed when using the sub-pixel interpolation methods 

described above. The sub-pixel estimation seems closer to an integer value than to its true 

value. For example, if the histogram of the true offset is a uniform distribution between 

values a and b, then there are more estimated values around integers than around the 

midpoint between integers. This systematic error is believed to be caused by two factors. 

First, only 3x3 correlation values are used in the calculation. Such low sampling 

frequency of the correlation surface introduces systemic error. Second, the fitting 

function does not properly reflect the property of the correlation function. For example, 

the correlation function should be a symmetric function at the peak position. But the 

fitting functions we used do not have a symmetric property. Although the systematic 

error is very small, it is necessary to investigate this further and improve it. 

    To calculate each cross-correlation value, the number of computations is 3MN. 

Assume the searching window size is K by L, then there will be (K-M+1)(L-N+1) 

matching windows and the total calculation will be 3MN(K-M+1)(L-N+1). If the initial 

position of matched point is well estimated, search window will be only 2 or 3 pixels 

larger than template window. In our data processing, we use state vector and surface 

elevation to estimate the initial position of matched points. Since the RADARSAT-1 

InSAR orbit data and elevation are relatively good, the search window size of 

(7+M)x(10+N) is used. The search window size does not affect the accuracy of matching, 

as long as the search window contains the true matched position. To increase speed, we 
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can reduce the searching window size to a confident range using position estimation from 

state vectors. 

    The template window size is determined by radar sensor parameters, such as pixel 

spacing in the range and azimuth directions. For standard beams, we use a window of 

size 60 pixels in the range direction and 200 pixels in the azimuth direction. Larger 

template size results in high correlation, but the correlation surface may become less 

sharp and large error in sub-pixel interpolation may be introduced. Smaller template 

window size causes large variations in the correlation surface. Noise effects may lead to a 

wrong matching position.  

    Magnitude based matching methods are easy to implement, and can be fast if 

implemented in the frequency domain. The disadvantage is that we do not use the phase 

information, which is very helpful for images with low contrast. Gabriel and Goldstein 

(1988) described a more accurate method based on the notion that the quality of 

interferogram fringes is highest when two images are correctly aligned. We first create an 

interferogram using two small patches from two images by conjugate multiplication of 

the two complex image grids. To evaluate the quality of the interferogram, we generate 

the fast Fourier Transform (FFT) of the interferogram, yielding a two-dimensional fringe 

spectrum. The power peak position of the spectrum represents the two spatial frequencies 

in the range and azimuth directions at which the brightest fringes appear. The relative 

quality of these brightest fringes is evaluated by computing the signal-to-noise ratio 

(SNR) of the spectrum by dividing the maximum power by the sum of all other powers. 

We store the quality associated with the window in the second image. Like cross-

correlation, we move the window to a new position and calculate the quality again. 
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Among all these windows, we find one that has the highest quality. Along with eight 

quality values of its neighbor windows, sub-pixel offsets are calculated using the methods 

described above. This method has the same computational complexity as cross-

correlation. However, since it uses phase information, it is more reliable and accurate 

than cross-correlation in areas where the image has low contrast.  

 

3.3 Velocity calibration 

    The measured range and azimuth offsets must be calibrated to calculate the surface 

velocity. The measured range offsets, like measured phases from the interferogram, are 

related to baseline, topography, and surface motion. We have to remove the baseline and 

topography effects. Azimuth offsets are also affected by baseline and topography. We 

will discuss next the models used to calculate surface velocity (Gray and others, 1998;  

Michel and others, 1999). 

    Gray and others (1998) use a parallel ray method to derive the surface velocity. 

Assume the radar ray of the first pass is parallel to the ray of the second pass, then the 

geometry of the observation is shown in Figure 3.3. Based on the geometry, the range 

offset δr has two components: parallel baseline component Bp at the satellite end and the 

motion component δmotion at the ground end given by  

)cos( αχ −= BBp                                        (3.17) 

)sin( SrDmotion r += θδ                               (3.18) 
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Figure 3.3: Geometry configuration of InSAR pair under parallel ray assumption. Dr is 

ground range displacement. B is the baseline, χ is the baseline angle, α is the radar look 

angle at the satellite, Sr and Sa are the terrain slopes in range and azimuth, respectively (to 

the local horizontal), θ is the local incidence angle and δr = δ1 + δ2. (From Gray and 

others, 1998) 
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Azimuth offset is considered as the effect of the motion of the surface under the 

assumption that images are deskewed to zero Doppler and the two orbits are parallel. By 

combining all of the above, the range and azimuth offsets can be expressed as (Gray and 

others, 1998) 

)sin()cos( rr SrDB ++−= θαχδ                                   (3.19) 

)cos( aaa SD=δ                                          (3.20) 
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Here rδ  is the slant range pixel shift in meters, aδ  is the azimuth direction pixel shift in 

meters, Dr is the surface ground range displacement, Da is the surface displacement in the 

azimuth direction, Sr is the terrain slope in the range direction to the local horizontal, Sa is 

the terrain slope in the azimuth direction to the local horizontal, χ  is the baseline angle, 

α  is the radar look angle, θ  is the local incidence angle, and B is the baseline. 

    Errors in Dr and Da are estimated as (Jezek 1999b) 
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    In Equation 3.23, the baseline effect on Dr is through B and angle χ. The 

topography effect is through the look angle α and incidence angle θ. According to the 

cosine law, a ground point (X,Y,Z) in Earth Centered Interial (ECI) coordinates will have 

a look angle  α and incidence angle θ defined as 
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where h is the satellite height (from satellite to the earth center), rx is the range distance 

from satellite to the ground point, and  re is the distance from the earth center to the 

ground point. That is  

222 ZYXre ++=                         (3.27) 

 

    Gray’s model (Gray and others, 1998) ignores the effect of the topography on the 

azimuth offset.  Since the satellite velocity vectors of two of the passes are not parallel, 

the angle, δα, between the two vectors in the plane of the incidence yields a topography 

dependent azimuth offset δv that is expressed in pixel units as (Michel and others 1999) 
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where z is surface elevation, Rz is azimuth pixel spacing, l is the line number with 

reference to the first line of the image, δv0 is the constant azimuth offset, and  δmotion  is 

the azimuth offset due to the surface motion. In the equation, the first term of the right 

side is the topography dependent azimuth offset. The second term produces an azimuth 

ramp in the offset field. 

 

3.4  Velocity errors 

    The random error of velocity is from random error in speckle matching. Equation 

(3.16) gives the random error of the pixel offset as a function of coherence, matching 

window size, and an oversampling factor. As discussed in 3.2.3, the random error of 

speckle matching is about 2 m/year in the azimuth direction and about 6 m/year in the 

range direction for this research. 

    Systematic biases on velocity are from baseline error, calibration model error, and 

velocity control point error. The baseline error causes a constant term plus a small 

variation across the range in velocity error.  The constant term can be removed by control 

points. The largest error in velocity is from velocity control points. The accuracy of the 

velocity control points, as well as their distribution, determines the velocity error.  So the 

systematic bias could reach up to 8 m/year. As a result, the total error for azimuth 

direction is about 10 m/year and range direction about 20 m/year. This is consistent with 

other researchers (Gray and others, 1998; Michel and others, 1999; Jezek, 1999b).  
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3.5 Comparison between interferometry and speckle matching 

    We have discussed two techniques for surface motion estimation using InSAR data 

in Chapters 2 and 3. Each technique has its advantages and disadvantages. The 

interferometry technique provides only the range direction motion. Its accuracy is on the 

order of a wavelength. For high decorrelation areas, the phase may be destroyed and the 

interferometry technique may fail. The speckle matching technique estimates the range 

offset and azimuth offset and can produce two-dimensional surface velocity information. 

The accuracy for speckle matching is limited by the pixel size of the image and is larger 

than interferometry as shown in Table 3.1. Since range pixel size is larger than azimuth 

pixel size (for standard beams), and range offset is affected by baseline and topography, 

the range velocity is less accurate than azimuth velocity.  Table 3.1 summarizes the 

comparison between interferometry and speckle matching techniques. The errors are 

taken from Section 2.4.2 for interferometry and from Section 3.5 for speckle matching.  

 

 Interferometry Speckle Matching 

Motion direction Range (one pair) Range & azimuth 

Velocity accuracy 4 m/year 

 

Range: 20 m/year 

Azimuth: 10 m/year 

Best apply areas Slow motion  Fast motion 

 

Table 3.1:  Comparison between interferometry and speckle matching techniques 
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    Based on the comparison, it is desirable to combine both techniques in surface 

velocity estimation from a single InSAR pair.  We use the range motion from 

interferometry and the azimuth motion from speckle matching to produce two-

dimensional surface velocity with the best possible accuracy. 
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CHAPTER 4 

 

IMPROVING INTERFEROMETRIC SAR COHERENCE BY DELAUNAY 

TRIANGULATION BASED CO-REGISTRATION 

 

4.1 Introduction 

A complex interferogram is formed by conjugate multiplication of two SAR 

images from two separate SAR observations over the same ground area.  Coherence or 

correlation of two SAR images is the normalized, local average of the interferogram 

magnitude. Unlike radar reflectivity measurements, which are mainly determined by the 

statistics of the surface height and slope distribution, coherence measurements are related 

to the total change in the distribution of affected scatters (Zebker and others, 1995). So 

coherence provides an effective measure of surface change (Rignot and others, 1993), as 

well as more quantitative measures including penetration depths on the Greenland Ice 

Sheet (Hoen and others, 2001) and forested area classification (Hagberg and others, 

1995).  

Decorrelation is the product of spatial decorrelation, temporal decorrelation, and 

thermal decorrelation (Zebker and Villasenor, 1992). Joughin (1995) further analyzed six 

sources of decorrelation: thermal, registration, baseline, volume, mismatch, and temporal 

decorrelations. Some of these terms are related to physical properties of the surface and 
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some are related to instrument distortion, viewing geometry, and analysis techniques. We 

seek to minimize decorrelation so as to emphasize science information. Among the 

sources of decorrelation, co-registration decorrelation can be a problem when there are 

strong spatial variations in surface displacement. This situation is common across the 

polar ice sheets where surface speeds may change 10 fold or more over distances of 100 

km. The co-registration of two SAR images is achieved by two steps: first, calculate the 

pixel offset for discrete tie points using a matching method; and second, calculate pixel 

offset for every pixel using an interpolation model based on the matched tie points. The 

first step can achieve excellent subpixel accuracy (Gabriel and Goldstein, 1988; Gray and 

others, 1998; Joughin, 1995; Michel and others, 1999; Small and others, 1993). 

Techniques include magnitude-based cross-correlation matching, phase or fringe-based 

matching, oversampling, and sub-pixel interpolation. Tie point accuracy varies from 1/10 

pixel to 1/40 pixel. Such matching accuracy is not critical for co-registration 

decorrelation because correlation is not sensitive to pixel offset error within 1/10 pixel 

(Hagberg and others, 1995; Joughin, 1995). The critical part, which influences co-

registration decorrelation, is the second step: tie point interpolation. In this chapter, we 

present a new approach that deals with the less studied problem. 

The traditional co-registration method uses interpolation based on affine 

transformation to interpolate range and azimuth offsets for every pixel of the SAR image 

based on matched tie points. Affine transformation accounts only for translation, rotation, 

scaling, and shearing of the image, but not for non- linear image changes associated with 

spatial variations in the surface displacement field. To solve this problem, Fatland and 

others (1998) used a local bilinear interpolation resampling method to co-register two 
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SAR images. Bilinear interpolation requires that the data are distributed on a regular grid. 

For RADARSAT-1 InSAR data over the fast moving East Antarctic Ice Streams, severe 

temporal decorrelation on some areas such as shear margins results in removal of tie 

points. Consequently the data are no longer regularly gridded and the bilinear 

interpolation method is  not applicable directly. In this case, Delaunay triangulation based 

interpolation is used to interpolate the irregular data set. The purpose of this chapter is 

first, to review theoretical background on how co-registration errors affect decorrelation, 

and how interpolation methods affect decorrelation for different applications. We then 

introduce a Delaunay triangulation based local co-registration method. Results from 

affine transformation co-registration and Delaunay triangulation co-registration are 

compared and discussed in details. Last, we present a coherence mosaic of the East 

Antarctic Ice Streams generated using the new co-registration method. 

 

4.2  Co-registration decorrelation of interferometric SAR 

Theoretical background 

We are interested in co-registration decorrelation caused by co-registration errors 

between two SAR images. In this section, derivation of co-registration decorrelation is 

provided. Unlike similar derivations in Hagberg and others (1995) and Joughin (1995), 

the work in this section is restricted to co-registration decorrelation in the range and 

azimuth directions. 

We define a ground coordinate system (x,y,z), where x is the along track 

direction, z is the surface normal direction and y is the direction of a cross product of z 
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and x.  The slant range image coordinate is (r,x), where r is a function of y and z. The 

complex signal amplitude is expressed as  
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where f(x,y,z) is terrain reflectivity. Wr and Wx are system impulse response functions in 

the range and azimuth directions. We assume that the system impulse response function 

is separable in range and azimuth directions. r0=r0(y,z), r1=r1(y,z) are ranges from the 

satellite to the target in the first and second passes. 

Assume there is no temporal change in reflectivity for the second observation, and 

system impulse responses for the second observation are the same as for the first 

observation. So the radar scatter from the registered image position of the second image 

with registration error δr in the range direction and δx in the azimuth direction is 
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To calculate the correlation of (4.1) and (4.2), we assume that scatters in a 

resolution cell volume are uniformly distributed and uncorrelated. Under the spatial white 

noise assumption, the correlation of (4.1) and (4.2) is expressed as (Joughin, 1995) 
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where σ(x,y,z) is a normalized cross section coefficient defined  in 
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)',','(),,()',','(*),,( zzyyxxzyxzyxfzyxf −−−⋅>=< δσ     (4.4)           

 

To simplify Equation (4.3), we assume the cross section coefficient σ(x,y,z) is 

only a function of variable z. We also replace r2-r1 with its approximation (Hagberg and 

others, 1995) 
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where r is the average of range r1 and r2,  and θ is the average of look angles for two 

observations. Through variable substitution, Equation (4.3) becomes 
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 (4.6)           

        

The correlation in Equation (4.6) is a product of four terms. The first term is a 

constant. The second term is an integral with depth. The third term is the integral of the 

range impulse response function and related to the range offset error δr. The fourth term 

is an integral of the azimuth impulse response function and is related to the azimuth 

offset error δx. The effect of the range offset error and the azimuth offset are separated. 

So the normalized co-registration decorrelation in range direction rρ and co-registration 

decorrelation in azimuth direction xρ  are written as 
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Both co-registration decorrelations are related to the SAR system’s imaging 

response function Wr and Wx. In Vexcel’s SAR processor system, a Kaiser window with 

Kaiser parameter β=2.4 is used. Using typical RADARSAT InSAR data parameters, the 

range co-registration decorrelation (Equation 4.7) and azimuth co-registration 

decorrelation (Equation 4.8), as a function of co-registration error in pixels in the range 

and azimuth directions are plotted in Figure 4.1. 
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Figure 4.1. Theoretical registration decorrelation coefficient curves. (a) in range 
direction, (b) in azimuth direction. We use typical RADARSAT parameters. Range 
bandwidth is 11.6 MHz. Doppler bandwidth is 900 Hz. Range spacing is 7.5 m and 
azimuth spacing is 8.117 m. R=914 km, θ=27.5°, λ=5.66cm, Bn=200m. Weight function 
is Kaiser window with β=2.4 and Square window. 

Registration error (pixel) 
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          Figure 4.1(a) uses a Kaiser window with β=2.4. The dashed line is for baseline 

Bn=0 and the solid line is for baseline Bn=198m. From Equation (4.7) it is known that 

the co-registration decorrelation in the range direction is also a function of the baseline 

Bn. Figure 4.1(a) shows that decorrelation for co-registration errors is less sensitive and 

drops slowly for larger baselines than for smaller baselines. This does not mean that the 

total correlation is larger for large baselines. 

Figure 4.1(b) shows co-registration decorrelation in the azimuth direction. The 

dashed line is for a square window and the solid line for a Kaiser window. For the Kaiser 

window, the decorrelation is less sensitive to the co-registration error.  The curves 

indicate that the co-registration decorrelation in both direction drops slowly when the co-

registration error is within a half pixel. For instance, if the co-registration error is 1/20 

pixel in both directions, the registration coefficient will be  0.9985*0.9987=0.9972. 

When the co-registration error is larger than a half pixel, both coefficients drop 

significantly. For co-registration error in both directions larger than 1 pixel, the total co-

registration coefficient will be below 0.30.  

 

Affine transformation based co-registration 

We have discussed the InSAR decorrelation due to co-registration errors. Now we 

investigate errors introduced by co-registration algorithms. The affine transformation is 

the most commonly used method to co-register two SAR images. First, the tie point pairs 

are generated using a phase or magnitude based matching method with sub-pixel 

accuracy. Then linear transformations are used to fit the range and azimuth offsets. The 

range offset dx and azimuth offset dy are expressed as 
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dx=a0+a1x+a2y                                                                                            (4.9) 

dy=b0+b1x+b2y                                                                                           (4.10) 

where a0, a1, a2, b0, b1, and b2 are affine transformation coefficients,  x and y are image 

positions. Equation (4.9) represents a plane for range offset over the reference SAR 

image coordinates (x, y). Equation (4.10) represents a plane for azimuth offset over the 

reference SAR image coordinates (x, y). The six parameters can be solved using a least-

squares adjustment method, based on the N tie points. The overall accuracy of affine 

transformation depends on the tie point accuracy, the number of tie points, distribution of 

tie points, and the suitability of a linear transformation model. The suitability of a linear 

transformation model will be discussed in the following section.  

 

Stationary surface 

In the range direction, the range offset results from baseline and elevation 

(assume no motion). The baseline effect on the range offset over a flat surface is nearly 

linear (Joughin, 1995).  Topography introduces non- linear range offsets. The topography 

effect on the range offset in pixels can be approximated by  (Joughin, 1995) 

zR
Bn

Rxz xx
00 sin

1
θ

−
+∆≈∆                                                    (4.11)           

where ∆x0 is the constant offset. Rx is the range pixel spacing, Bn is the perpendicular 

baseline, R is the distance from the satellite to the target, θ0 is the incidence angle at the 

scene center, z is the elevation. In the azimuth direction, the azimuth offset shift ∆y 

between two image pixels of the same stationary target is due to non-parallel orbits 
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(crossed orbit) (Gabriel and Goldstein, 1988). Michel and others (1999) derived the 

azimuth offset related to the satellite flight height change, which includes an elevation 

dependent term and a linear term with respect to azimuth position. We consider more 

general cases where there is a parallel baseline change along the flight track. Assume that 

the two SAR images are deskewed to zero Doppler. So the azimuth offset can be written 

as  

z
R

xr
R

yy
yy

ααβ sin
]cos1[

sin
0 +−++∆=∆                                 (4.12)           

where Ry is the azimuth pixel spacing, r and x are image coordinates in range and 

azimuth directions, ∆y0 is constant azimuth offset, α is the angle between two satellite 

velocity vectors in the vertical plane,  β  is the angle between two satellite velocity vectors 

in the plane of the look direction and the velocity vector of the first satellite, and z is 

elevation. Since angles α and β  are almost constant for a frame of 100/km, Equation 

(4.12) is considered a constant term plus two linear terms with respect to image 

coordinates and an elevation dependent term. The last term is non- linear with respect to 

image position. 

Based on the above analysis, we conclude that for areas where there is no motion 

occurring, the affine transformation model can approximate the range offset with an error 

better than 0.1 pixel and an azimuth offset with an error better than 0.01 pixel. Using 

Figure 4.1, the total co-registration decorrelation is 0.99 for such an error bound. Thus, 

there is no significant co-registration decorrelation for an affine transformation where 

there is no motion.   
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With surface motion 

The Antarctic ice sheet surface is in motion and the motion may be spatially 

complex. For example, differential motion across the ice streams shear margins reaches a 

kilometer per year, corresponding to offset differences of tens of pixels in SAR images. 

Therefore, affine transformation mapping between the two images may result in 

misregistration. The coherence will vary depending on the distribution of control points. 

If the control points are across all areas, the transformation attempts to fit everywhere and 

eventually has a larger error and low coherence. If control points reside on only a portion 

of the image where local relative motion is small, then the area will be well fit by the 

affine transformation, resulting in good coherence. But other than this area in the image, 

the decorrelation will be high. This piece-by-piece procedure has been used to calculate 

velocity in specific regions.  

Researchers have employed affine transformation based co-registration in glacier 

applications. However, these applications have either a shorter temporal baseline or lower 

surface motion so the co-registration decorrelation problem is not so serious. In some 

applications, one portion of an image area, such as the glacier interior, is of particular 

interest, so the tie points are selected in this area to guarantee good coherence in this area 

and ignore the decorrelation of other areas. Considering applications with longer 

temporal baseline and fast moving surfaces (e.g., RADARSAT InSAR over the 

Antarctic), we intend to achieve good coherence across the whole image. A Delaunay 

triangulation based local transformation can accomplish this goal. 
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4.3  Delaunay triangulation based co-registration 

Delaunay triangulation based co-registration of two SAR images uses a standard 

technique of surface interpolation (Kao and others, 1991; Saalfeld, 1985). In SAR image 

co-registration, matched tie points are processed to eliminate noise or low quality tie 

points. This results in an irregular tie point distribution. For example, on the shear margin 

zone or low correlation area, removal of high noise points leaves larger holes in these 

areas. To interpolate any points, we need to determine (1) which points are nearby, and 

(2) how those nearby points should be weighted to produce the desired value. These are 

two issues to be discussed: Delaunay triangulation and interpolation in the triangle. 

 

Delaunay triangulation 

For a finite point set { pi=(xi, yi ) i=1,…N} in the reference image, triangulation 

subdivides the image space into triangles. Among all triangulation types, Delaunay 

triangulation is a special type of triangulation and particularly suitable for interpolation 

(Kao and others, 1991, Barber and others, 1996). This is because Delaunay triangulation 

maximizes the minimum angle of all the angles that are present in the triangulation. Very 

small angles cause distortion problems because the interpolation is based on the distant 

vertex values. Delaunay triangulation avoids triangles with extremely small angles. This 

angle relationship keeps each angle vertex reasonably distant from the triangle side 

opposite that vertex. Slight perturbations of vertices of Delaunay triangulation rarely 

result in a vertex moving across the opposite edge, an operation called “triangle folding.”  
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Delaunay triangulation is unique for a point set, if there are no four points co-circular 

(four points on the same circle). For any triangle in Delaunay triangulation, there are no 

points inside its circumcircle (a circle that passes the three vertices of the triangle). This 

is called the empty circumcircle property. It is a Delaunay triangulation’s necessary and 

sufficient condition. So Delaunay triangulation can be built by locally verifying the 

empty circumcircle property. If there is a violation of this property,  for example, point p4 

is inside the triangle of vertices p1, p2, p3 as shown in Figure 4.2(a), then the edge is 

switched from p2p3 to p1p4. The new triangles as shown in Figure 4.2(b) obey the empty 

circumcircle property. If there is not any violation of the circumcircle property for any 

triangle, a Delaunay triangulation is generated.  

 

 

 

Figure 4.2. Swap test of empty circumcircle property. Left: P4 is inside the circumcircle. 

Right: after edge swap, no points are in circumcircle. 
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A simple implementation for Delaunay triangulation is an incremental algorithm, 

which builds Delaunay triangulation by inserting points, one point at a time (Kao and 

others, 1993). At any stage of insertion, assume the current inserted points are already 

triangulated as a Delaunay triangulation. When a new point is inserted, first find a 

triangle inside which the point is located. The newly inserted point, with the three points 

of the triangle, can form three new triangles. Use the swap test locally to update triangles 

to satis fy the empty circumcircle property. If the newly inserted point is outside the 

convex hull of the current point set, then new triangles are formed between the newly 

inserted points and all visible points on the convex hull of the current point set. The swap 

test is also applied to update triangles to satisfy the empty circumcircle property. The 

insertion of points is in random order. The order of insertion does not affect the final 

result.  

 

Local interpolation 

Once a point set { pi=(xi,  yi ) i=1,…N} in the reference image is Delaunay 

triangulated, we want to interpolate the range offset and azimuth offset for any points 

inside the triangle using the offsets of the three vertices. This is similar to the process of 

converting a digital elevation model from Triangle Irregular Network (TIN) to regular 

grid. The interpolation methods could be nearest point, cubic, or linear interpolation. 

Nearest point interpolation does not produce a smooth and accurate estimation, especially 

when the triangle is large. Cubic interpolation involves complicated computations and the 

interpolation does not honor tie points. Linear interpolation is used inside a triangle for 

SAR image co-registration.  
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Assume a triangle has three vertices p1=(x1,y1), p2=(x2,y2), and p3=(x3,y3). A point 

p =(x,y) is inside the triangle. Then p can be expressed uniquely as a linear combination 

of the three points: 

332211 pppp ⋅+⋅+⋅= ααα                                               (4.13)    

where α1+α2+α3=1; and α1, α2, and α3 are non-negative. α1, α2, and α3 are called convex 

coordinates or barycentric coordinates of p. They are defined by the area ratio shown in 

Figure 4.3 (Saalfeld, 1985): 

αi=Area(∆ppkpm)/Area(∆p1p2p3)        k,m≠i                                              (4.14) 

 

 

 

 

 

 

 

Figure 4.3. Interpolation inside a triangle 

 

Assume the range offsets at the three vertices p1, p2, p3 of a triangle are dx1, dx2, 

dx3 respectively. Azimuth offsets are dy1, dy2, dy3, respectively. Then the range offset dx 

and azimuth offset dy at the point p can be written as 

dx=α1dx1+α2dx2+α3dx3                                                                              (4.15) 

dy=α1dy1+α2dy2+α3dy3                                                                              (4.16) 
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The three coefficients α1, α2, and α3 are dependent on the point p=(x,y). So we 

have to calculate them for every point. Saalfeld (1985) proposed a fast way to calculate 

the three coefficients. 

The triangle based local linear fitting of range and azimuth offsets provides 

smooth and continuous offsets (the first derivative is not continuous). Every point is 

determined by only local points, which are the three points of a triangle. If a point is on 

the edge of the triangle, one coefficient will be 0. If a point is on the tie point, then one 

coefficient is 1 and other two are 0. In implementation, an algorithm that quickly locates 

triangles is required. 

 

Analysis of registration error  

Assume the tie point matching has an error σx in range direction and σy in 

azimuth direction. Then the error of the range offset at a point inside a triangle can be 

estimated as 

σdx
2=α1

2σ2
x +α2

2σ2
 x +α2

2σ2
 x                                                                 (4.17) 

Since 0≤αi≤1 and α1+α2+α3=1, (4.17) becomes  

σdx
2≤3σ2

x                                                                          (4.18) 

Similarly, the error of azimuth offset at point p is  

σdy
2≤3σ2

y                                                                                                 (4.19) 

It makes sense that the error at point p is the same as the error of the vertices. The 

position of point p is bounded by the three vertices of a triangle. So the errors of range 

and azimuth offsets for this point are also bounded by the errors of range and azimuth 

offsets for the three vertices. This is based on the assumption that control points are well 
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distributed, such that every triangle has almost linear variation. If a triangle is too large 

and there is a large variation of surface motion in side a triangle, then we must densify 

the control points. In this research, tie points are selected in about 1 km spacing.  

 

4.4  Example and Application 

Study area 

An InSAR pair over Recovery Glacier was selected for testing the co-registration 

methods. The InSAR pair 5527 from orbit 9851 and orbit 10194 was acquired on 

September/October 1997 during the Antarctic Mapping Mission I (AMM-1).  Figure 4.4 

shows the location of the frame and its slant range intensity image. In this frame, the ice 

funnels into Recovery Glacier. The ice velocity along the center line starts from 110 

m/year at the upper left corner that increases to 180 m/year at the right lower corner. The 

shear margin aligns vertically in the right portion of the frame. Across the shear margin, 

the azimuth offset varies significantly. 

 

 

 

 

 

 

 

Figure 4.4. Location of example data 
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Flight direction 
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Data processing 

For the above InSAR frame, we created interferograms using two co-registration 

methods. One is the traditional affine transformation based co-registration method and 

the other is the Delaunay triangulation based co-registration method. We compare the 

results produced by the different methods. 

Affine transformation based co-registration is performed by first matching tie 

points, then using a least squares adjustment to calculate the parameters of Equation (4.9) 

and (4.10), which represent two surfaces of offsets in the range and azimuth directions. 

The affine transformation parameters are used to resample the secondary SLC image into 

the same geometry as the reference SLC image. Then the interferogram is created by 

conjugate multiplication of the reference SLC with the resampled SLC. The coherence 

image result is shown in Figure 4.5 (a). 

The Delaunay triangulation based co-registration involves more steps. First, we 

match tie points between the reference SLC image  and the secondary SLC image. The tie 

points in the reference SLC are selected as regular grid points with a range spacing of 60 

pixels and an azimuth spacing of 200 pixels. Speckle matching (Gray and others, 1998) is 

used to find the sub-pixel offset in the range and azimuth direction in the secondary SLC 

image. Second, we preprocess the tie points based on the matching quality and spatial 

distribution. An interactive process is used to eliminate bad points based on the histogram 

and values of neighbors.  A low-pass filter is also applied to smooth the offset shift for tie 

points. After this process, the tie points may no longer be regular grids because some bad 

tie points are deleted. Third, we use MATLAB function (GRIDDATA) based on 
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Delaunay triangulation to create range offset and azimuth offset maps in an evenly 

spaced grid. Fourth, the resampled SLC of the second image is created based on the range 

and azimuth offset maps. Last, the interferogram is created by conjugate multiplication of 

the reference SLC and resampled SLC. The coherence image result is shown in Figure 

4.5 (b). 
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(a) 
    

(b) 
 

Figure 4.5. Comparison of coherence images of the two registration methods 
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Coherence and interferogram comparison 

Figure 4.5 is a comparison of the coherence images generated using (a) affine 

transformation registration and (b) using Delaunay triangulation registration. The main 

portion of the image shows the glacier moving from the top to the bottom and turning 

slightly right when close to the bottom right. A shear margin running up and down on the 

left side of the image divides the image into a fast-moving and a slow-moving portions in 

the azimuth direction. In this case, the affine transformation fails to accurately fit the 

surface offset in the azimuth direction across the entire image. As a result, the affine 

transformation fits well in the left lower portion of the image, but yields large co-

registration error in the upper right portion. The co-registration error in the azimuth 

direction is more than 1 pixel in some areas. Due to the high co-registration decorrelation, 

there are problems with this coherence image: the right side of the shear margin, the 

unwrapped phase is lost when calculating velocity; physical properties are obscured by 

the co-registration decorrelation. Shear margin and fine structures related to subglacial 

topography are not shown in the coherence image. 

Figure 4.5(b) is the coherence generated from the Delaunay triangulation based 

co-registration. Local variations of surface offsets are well captured. Because the co-

registration decorrelation is minimized, the entire coherence image has good coherence 

quality and is imprinted by features related to surface properties. All problems mentioned 

above are solved. The shear margins with intense ice crevassing in the left bottom corner 

and the right side of the image are clearly depicted, with high contrast to other regions. 

There is differential motion in the interior of the glacier from the center of the image to 



 68  

the right lower corner of the image. Long wavelength linear features (>30/km) with left 

right orientation in the upper left portion of the image are related to the bed topography. 

Some of them extend across the shear margin to the slow-moving ice sheet.  Several 

crevasse belts along the flow direction are clearly visible in the coherence image. 

Individual crevasses perpendicular to the flow direction are clearly visible. This image 

demonstrates that the new method significantly improves coherence and is very helpful in 

the analysis of surface physical properties. 

Figure 4.6 shows two interferogram clips of the same region in the right upper 

corner of the frame marked in Figure 4.4. Figure 4.6(a) is generated by affine 

transformation co-registration, and Figure 4.6(b) is generated by Delaunay triangulation 

based co-registration. Both interferograms are multi look 2 x 8 averaged, spherical phase 

removed. Fringes in Figure 4.6(a) have a lot of noise. In the right half of Figure 4.6(a), 

fringes are completely invisible. In Figure 4.6(b), fringes are clearly visible, even in the 

shear margin zone. Such improvements to the interferogram are important for calculation 

of velocity from the phase. 
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Figure 4.6. Comparison of interferogram chips 
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Comparison of coherence histograms  

Histograms of the two coherence images shown in Figure 4.7 are calculated to 

understand how the correlation values differ. Figure 4.7 illustrates the comparison of 

histograms of coherence images generated from the two co-registration methods. The 

dashed line is for the affine transformation method and the solid line is for the Delaunay 

triangulation based method. The dashed line histogram has two peaks, one around 0.1 

representing the pixels (in Figure 4.5 (a)) with high decorrelation in the far range due to 

poor co-registration, and another peak is around 0.52 representing pixels with good 

correlation in the left lower portion of Figure 4.5(a). Nearly half of the pixels in the 

image have correlation values less than 0.3. The histogram of Figure 4.5(b) with the solid 

line dramatically shifts the histogram curve (solid line) to the right side. The peak around 

0.1 is eliminated and the peak at 0.5 is enlarged. The change from 2 peaks to 1 peak 

suggests that the coherence for points whose original coherence around 0.1, the low peak, 

has been improved. Average correlation also increases from 0.336 to 0.4336. It should be 

understood that coherence will always be smaller than 1 even when co-registration is 

perfect, because there are other decorrelation sources. Figure 4.7 shows that the total 

decorrelation other than co-registration for the frame is about 0.52.  
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Figure 4.7. Comparison of histograms of coherence images in Figure 4.5. Dash line is for 

Figure 4.5(a), solid line is for Figure 4.5(b). The bin size used to count pixels is 0.01 
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Coherence mosaic of the East Antarctic Ice Streams  

Using the new co-registration technique, a coherence mosaic of the East Antarctic 

Ice Streams is created by processing six InSAR swaths data acquired during the Antarctic 

Mapping Mission 1 (AMM-1) in 1997 covering the East Antarctic Ice Streams, including 

Filchner-Rone Ice Shelf, Bailey Glacier, Slessor Glacier, Recovery Glacier, RAMP 

Glacier, and Blackwall Ice Stream. For each frame, two InSAR images are co-registered 

using the Delaunay triangulation based co-registration, then the coherence image and the 

interferogram are calculated. The coherence images are rectified with terrain correction to 

ground space with a resolution of 200 m by 200 m. The coherence map is created by 

mosaicking all frames in the region. Figure 4.8 is the coherence mosaic of the East 

Antarctic Ice Streams created using the HSV color model. The hue is encoded according 

to a coherence value ranging from 0 to 1. The blue color represents low coherence and 

the red color represents high coherence. The SAR image is encoded as intensity. 

During the mosaicking process, no radiometric balance or stretching is applied 

because correlation values are absolute representations of geophysical properties and 

should be preserved. As discussed above, coherence is influenced by many factors, 

including surface properties, data acquisition (baseline, signal bandwidth, and signal 

strength), SAR processing, and co-registration. Between two adjacent frames of the same 

swath, data acquisition and SAR processing effects are similar or vary continuously. Co-

registration problems can cause an inconsistency of coherence in the overlap region, 

resulting in seam lines between adjacent frames of the same swath.   The new co-

registration method minimizes (nearly eliminates) the co-registration effect on coherence. 
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As a result, the overlapping region of any two adjacent frames on a swath has a consistent 

and continuous coherence across frames. There are seam lines between overlap swaths. 

This is caused by an acquisition effect, for instance, due to different baselines for 

different swaths. These effects on coherence are almost constant across a frame. 

Figure 4.8 remarkably depicts the Ice Streams over the East Antarctic and reveals 

surficial geophysical properties. The coherence map will be used in scientific analysis of 

the East Antarctic Ice Streams. In Chapter 7, we will discuss the use of the coherence 

map in determining shear margins, grounding lines, and ice rises in the East Antarctic Ice 

Streams. 
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CHAPTER 5 

 

PHASE UNWRAPPING AND PHASE RECONCILIATION 

 

5.1 Introduction 

The measured interferometric phase is wrapped into the interval (-π , π]. There is a 

modulo-2π  ambiguity in the phase. To calculate surface motion or estimate surface 

elevation, the modulo-2π  ambiguity has to be removed and the wrapped value has to be 

converted into the unwrapped value. 

Phase unwrapping has been studied for over 20 years. Many unwrapping 

algorithms have been developed and used in commercial software and research. They can 

handle a variety of situations and effectively unwrap phase for most applications, even 

with relatively low coherence. However, for application of RADARSAT InSAR over 

Antarctica, challenges still exist. For the Antarctic Ice Streams, ice moves fast (>200 

m/year) and the shear margin is highly deformed. RADARSAT’s 24-day repeat 

observation can result in temporal decorrelation. Shear margins or other low coherence 

regions partition the interferogram into isolated “islands”. Each island has visible fringes 

and can be unwrapped successfully. Between any two islands, there is no fringe link. 

Figure 5.1 shows an example of such a situation. In Figure 5.1(a), the RAMP Glacier 

(middle) merges with Recovery Glacier (left to right). Due to heavy crevassing, shear 
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margins for both glaciers have very low coherence (Figure 5.1(b)). The dark bands 

separate the interferogram into several disconnected regions. Each individual region has 

clear fringes and can be phase unwrapped successfully. However, there is a phase 

ambiguity between these regions. If there are control points over every region, phase 

unwrapping can be solved using existing algorithms. In this research, we solve for the 

phase ambiguity between these regions with the help of range offset from speckle 

matching. Once all the regions are fitted into the single surface, phase ambiguity between 

every two regions can be solved.  

In this chapter a brief review of phase unwrapping methods will be presented. The 

methods can be found in the literature (Goldstein and others, 1988; Ghiglia and Romero, 

1994; Xu and Cumming, 1999; Joughin, 1995). Then the phase reconciliation method 

will be introduced. It can align all unwrapped phase components of the same image to a 

single reference. Error analysis, examples, and implementation of the method are also 

presented. 
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Figure 5.1. InSAR frame 5556 of orbit 9822/10165.  
(a) SAR intensity image. (b) Coherence image 
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5.2 Phase Unwrapping 

A basic phase unwrapping approach is an integration-based approach developed 

by Goldstein and others (1998). The approach is to integrate phase differences, adding 

the integer number of cycles that minimizes the phase differences. The image resolution 

is assumed to be fine enough that the phase change between two neighboring pixels does 

not exceed a half cycle. Under this assumption, the phase image is differentiated and the 

phase difference is wrapped to the interval [-π ,π].  

If the phase image is error free, line integration from point A to point B should be 

independent of path. In other words, the integration along a closed path should be zero. 

Goldstein and others (1998) identify two types of errors in the unwrapped results:  (1) 

local error caused by the noise from a few points, and (2) global errors in which local 

errors may be propagated to the entire data set.   Local errors are indicated by residues, 

which are residues of closed path integration formed by each set of four pixels that are 

mutual neighbors.  The residues are 0 if there is no local error, and ±π  if there is local 

error.   

Residues play a key role in selecting an integration path. If the path encloses a 

single residue, integration is not zero. However, if the path encloses an equal number of 

positive residues and negative residues, the integration is zero due to cancellation. To 

avoid the non-zero integration, branch cuts are made between residues to prevent any 

integration path from crossing. So the approach is to connect nearby positive and 

negative residues with cuts that intersect the integration path so that no net residues can 

be encircled and no global error generated, although local errors in the immediate vicinity 

of the residues may occur. 
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Goldstein and others (1988) implement the approach in a way to minimize the 

total length of the cuts and thereby minimize the total discontinuity. The image is 

scanned to find a starting residue. Then a box of size 3 is drawn around the residue, and 

another residue is searched in the box. If another residue is found, a branch cut is made 

between the two residues. If the new residue is of opposite sign, the cut is unchanged, and 

the image is searched for a new starting residue. Otherwise, the box moves to the new 

residue and repeats the above procedures. This process continues until no new residue is 

found in the box or an opposite sign residue that balances the cut is found.  The box size 

will be increased by 2 for a new starting residue. 

Joughin (1995) uses information in the residues themselves to help determine the 

shape of discontinuities. The algorithm classifies residues into two groups. The first 

group is for residues in regions where the density of residues is low and the second group 

is for residues from high-density regions. The classification is done by counting the 

number of residues in a box surrounding the residue. If the number of residues is smaller 

than a pre-defined threshold, the residue is assigned as a low-density residue. Otherwise, 

it is assigned as a high-density residue. 

Low-density residues are typically related to a random error of phase, while the 

high density residues are related to phase changes. They are processed separately. Low-

density residues are connected with a branch cuts if they have opposite signs and the 

distance between them is less than a threshold value. High-density residues are grouped 

to form regions using a morphological dilation operation. Then regions are labeled and 

balanced. Branch cuts are determined by the minimum of the weighted distances. Once 
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the branch cuts are selected, phase differences are integrated to calculate the unwrapped 

phase. 

There are also other algorithms, which are not based on residues and branch cuts. 

One example is the algorithm developed by Ghiglia and Romero (1994). This algorithm 

first determines the wrapped phase difference in two dimensions, then finds a phase 

surface that fits the observations using least squares. The algorithm can generate an 

unwrapped phase by adding arbitrary values, not only multiples of 2π .  Another 

algorithm developed by Xu and Cumming (1999) uses region growing to unwrap phase. 

The region-growing algorithm minimizes unwrapping errors by starting at pixels with 

high quality and processing along paths with high confidence.  The algorithm is capable 

of correcting unwrapping errors to a certain extent and stopping their propagation. 

  

5.3 Phase Reconciliation 

All algorithms reviewed in the previous section can unwrap phases for a region 

where fringes are well connected. However, an interferogram image may be segmented 

by highly decorrelated areas. This often occurs in ice streams. For this case, we 

developed a phase reconciliation method that can merge all these individual regions into 

a large area in which all phase values have the same reference. 

For an InSAR data pair, assume that the interferogram is divided into m pieces of 

isolated islands, called fringe zones, by highly decorrelated channels, called non-fringe 

zones. Each piece of interferogram can be unwrapped using the phase unwrapping 

algorithm described above, if the seed point is selected inside a fringe zone. Each fringe 
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zone has its own relative reference. m fringe zones have m reference points. As a result, 

there are m unknowns for the entire image. 

Instead of finding solutions for m unknowns,  “phase reconciliation” is used to fit 

all fringe zones into the same reference and to reduce the number of unknowns from m to 

1. The key to the algorithm is to use range offset from speckle matching as a guide across 

the whole image. Figure 5.2 illustrates the relationship between the range difference of 

the two passes and the pixel offset in the two images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Relationship between range difference and pixel offset 
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        Assume R1 and R2 are distances from the satellite to the target in the first and second 

passes. Then the range offset ∆ is   

12 RR −=∆                    (5.1) 

If we assume the unwrapped phase is Φ, we have 

)(
4 0Φ+Φ=∆
π
λ

                  (5.2) 

where Φ0 is a constant value associated with the relative reference point in phase 

unwrapping. Φ includes all effects from baseline, DEM, and motion. 

From Figure 5.2, R1 and R2 can be expressed as functions of their pixel positions 

r1 and r2 in the slant range SLC images 

rRrRR 1
0

11 +=                   (5.3) 

rRrRR 2
0

22 +=                   (5.4) 

where r1 and r2 are pixel positions of the target in range direction in the first and second 

images.  R1
0 and R2

0 are ranges from the satellite to the first pixel in the first and second 

images, Rr is the pixel spacing in the range direction. 

Subtracting equations (5.3) from (5.4) yields 

rrr RRRrrRRRRR δ+−=−+−=− 0
1

0
212

0
1

0
212 )(        (5.5) 

where δr=r2-r1 is the range offset measured from speckle matching. Combining Equations 

(5.1), (5.2), and (5.5), we have the relationship between the unwrapped phase Φ and the 

range offset δr from the speckle matching as 


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δ           (5.6) 
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Since R1
0 and R2

0 are constant for the each frame, Φ0 is constant for all points for a fringe 

zone, then the second term  0
2

0
104

RR −+Φ
π
λ

 in Equation 5.6 is constant for the fringe 

zone. Let )(
4

' 0
2

0
10 RR −+Φ=Φ

λ
π

, then Equation 5.6 can be rewritten as 

'
44

Φ+Φ=⋅
π
λ

π
λ

δ rrR             (5.7) 

Here Φ’ is the unknown phase for the fringe zone and is related to the reference point 

used for phase unwrapping in the fringe zone and the InSAR geometry. 

Notice that Φ is the unwrapped phase, which includes baseline, DEM, and motion 

effects. The range offset δr also includes these effects. Now we see that Φ and δr are two 

different measurements for the same thing: range offset. But they are different in the 

following aspects. 

1. Φ is a phase measurement, while δr is measured from speckle matching 

2. Φ unit is rad, while δr unit is pixel 

3. Φ is a more accurate measurement than δr. 

4. Φ is a relative measurement with respect to a arbitrary reference in a fringe zone, 

while δr is an absolute measurement across the frame. 

The purpose of phase reconciliation is to find Φ’ for every fringe zone and add it 

to the unwrapped phase. Using least squares adjustment, Φ’ can be solved as 

∑ 





 Φ−⋅=Φ rRr

N
δ

λ
π41

'           (5.8) 

where N is the total number of points in the fringe zone. After solving Φ’, replace Φ with 

Φ+Φ’ for this fringe zone. Repeat this process for all fringe zones. The final phases for 
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all fringe zones in the frame are adjusted to remove the phase ambiguities between the 

fringe zones. 

The method can be simply explained in this way. For the range shift, speckle 

matching provides a complete and absolute surface with relatively high noise. 

Interferometry provides many small patches with relatively high accuracy. If we add an 

additional phase value for a region, this region can fit into the range shift surface.  

 

5.4 Error analysis 

From (5.8), the uncertainty in Φ’ is  

Φ+=Φ
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                                       (5.9) 
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                                       (5.10) 

where σδ  is the range offset error from speckle matching, σΦ is phase error. Uncertainty 

in Φ’ introduces systematic error in the final phase for the fringe zone. The system error 

is inversely proportional to square root of N, which is the number of points used in 

calculation in the fringe zone. The random error of the final phase is still the same as that 

of the original phase. Phase reconciliation does not change the random error of the phase.  

 

Baseline, DEM and reference effects 

The above discussion assumes that unwrapped phase Φ includes the baseline and 

DEM phases and the motion phase, since range offset δ from speckle matching also 
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includes this information. Baseline and DEM cause phase ramp and a high gradient in the 

interferogram. It may cause problems in phase unwrapping. A practical way is to remove 

the base line and DEM effect from the measured phase prior to phase unwrapping. Then 

add them back after phase unwrapping. Another way is to remove the baseline and DEM 

effects from the measured phase and speckle matching offsets. No matter which way we 

use, these effects will be canceled in Equation 5.8. So errors in the baseline and DEM 

will not contribute to the phase reconciliation. 

The selection of a reference point in phase unwrapping does not affect phase 

reconciliation. When the reference changes from P1 to P2, there is a constant phase 

change ∆Φ in Φ. From Equation 5.8 we see that there will also be a opposite change -∆Φ 

in Φ’. So the new phase Φ+Φ’ remains the same, no matter which reference point we use.  

 

5.5 Example 

We will demonstrate the phase reconciliation technique using an InSAR frame 

5556 of orbit 9822 and 10165 shown in Figure 5.1(a). In the frame, the RAMP glacier 

moves from the top down to an intersection with the Recovery Glacier, which is moving 

from left to right. The left upper quarter of the image and most of the right side of the 

image is slow moving ice. Some exposed rocks are visible from the image. High 

backscatter returns are visible in the shear margins of both the Recovery and RAMP 

glaciers. Extensive flow stripes appear where the RAMP and Recovery glaciers merge. 

Figure 5.1(b) shows the coherence of the two observations. As expected, shear margins 

have low coherence and are in dark tones. The off glacier areas (two sides of the RAMP 
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glacier) have high coherence. Inside the RAMP glacier and the Recovery glacier, there 

are large portions of areas with good coherence.  

Figure 5.3 shows the interferogram of the frame after the baseline and DEM 

effects are removed. Figure 5.3(a) is for the entire frame and Figure 5.3(b) is the enlarged 

view of the box in Figure 5.3(a). The interferogram is the effect of surface motion only. 

Fringes are clearly on the slow motion area and most parts of the interiors of both 

glaciers. Fringes are destroyed at the shear margins. To do phase unwrapping, five seed 

points marked in the image are used. Their locations are listed in Table 5.1. 

Each seed point listed above is used to run the phase unwrapping process. The 

process starts from the seed point and expands the unwrapped region until it is stopped by 

highly decorrelated channels. Figure 5.4 shows the five unwrapped regions from the five 

seed points. Each region has its own reference, as marked in Figure 5.3 (a). Regions A 

and B have a very small variation because they are slow moving areas. Regions C and D 

have larger phase variations because of the ice motion on Recovery Glacier.  

The phase reconciliation method is applied on the five regions. Range offset from 

speckle matching is used as a global reference for each region. Since phases here include 

only motion effect, baseline and DEM effects are also removed from range offsets. For 

each region, we estimate the phase Φ’ using (5.7) and then replace Φ with Φ+Φ’ for this 

region. The phase reconciliation result is listed in Table 5.1. 
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Region Seed point N Φ ’ (rad) σΦ’ (rad) 
A 200,200 1994 17471 0.8 

B 2500,1000 5172 17318 0.5 

C 3363,2545 287 20091 2.1 

D 70,2500 1607 19007 0.9 

E 1420,500 884 16559 1.2 

 

Table 5.1: Statistics of phase reconciliation for frame 5556 of orbit 9822/10165 

 

In the table, column N is the number of points used in the calculation of Φ’. Φ’ is 

the adjusted phase for a region. σΦ’ is the systematic error of phase for the zone 

introduced by phase reconciliation. It is calculated using 5.10 in which σδ=0.02, Rr=8 m, 

σΦ=0.2. It is very small because it is inversely proportional to the square root of N. For 

region C, σΦ’ of 2.1 rad is equivalent to a velocity error of 0.14 m/year.  

The reconciliated  phase is shown in the right bottom corner of Figure 5.4. The 

entire frame uses the same reference point. The two sides of the RAMP Glacier have 

small variation because they are stationary. The Recovery Glacier moves from left to 

right and the velocity increases from left to right. In the interior of the RAMP glacier, 

there are areas where phases are smaller than stationary areas. This is because the 

orientation of the RAMP Glacier is moving down and slightly toward the left. This means 

there is a motion component in the range direction moving toward the satellite. 

A one-dimensional profile shown in Figure 5.5 is used to illustrate the change of 

phase in these steps. The profile is along a constant azimuth line near the bottom of the 

frame and crosses through region D and C. Figure 5.6(a) is an unwrapped phase of the 
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surface motion effect, only before phase reconciliation. The left segment is from region D 

and the range coordinate is from 0 to 2000. The phase value is about 50 at point 0, -250 at 

point 700, and 550 at 2000. From Table 1, Φ’ is 19007 for region D. So the new phase 

for region D is about 19057 at point 0 and about 19557 at 2000. The segment from 2400 

to 3550 is from region C. The phase is increased by 20091 for this region, according to 

Table 1. So this segment moves higher than the segment in region D in Figure 5.5(b). 

After phase reconciliation, the two segments are well aligned although there is a break 

between them. The new curves suggest that ice velocity increases in the range direction 

along this profile. 

The technique presented in this chapter is extremely useful for interferometry 

applications in the Antarctic using RADARSAT InSAR data. The inner bodies of fast 

moving glaciers have good coherence, but they are isolated by heavily decorrelated shear 

margins. It is unlikely to have a sufficient number of velocity control points on the 

moving glaciers. With this technique, we are able to reference the interferogram in the 

whole frame to the same reference. This makes the velocity calibration easy because we 

have only one unknown for range motion. We also developed a technique to transmit 

velocity control points from one frame to its neighbor frame so we use one reference for a 

long strip. This significantly reduces the requirement of velocity control points in the 

Antarctic where they are expensive to obtain.  
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Figure 5.3:  Wrapped phase after removal of baseline and topography.  
(a) entire frame with five seed points. (b) zoom in of small box in (a).  
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Figure 5.4: Unwrapped phase of five regions A-E using five reference points marked in 
Figure 5.3 and the merged phase. The final merged phase is at the right bottom corner. 
All phases are motion phases. 
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(a) 

 
 

(b) 
 
 
Figure 5.5:  Phase profiles along a constant azimuth line before phase reconciliation (a) 
and after phase reconciliation (b) 
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5.6 Implementation 

We demonstrate the technique in two steps: phase unwrapping and phase 

reconciliation. The implementation can integrate these two steps into one. The input to 

the process is the unwrapped phase of the entire frame and the range offset data from 

speckle matching. Baseline and topography effects should be removed from the 

unwrapped phase and range offset. The process first scans the phase image to find a 

reference point. Then from this point, phase unwrapping is performed. The pixels 

successfully unwrapped will be marked with a region number. After finishing a region, 

the region size is compared with a threshold. If the size is smaller than the threshold, then 

this region is discarded and marked as a failed region. If the size is larger than the 

threshold, then we use least squares to find the adjusted phase for this region with the 

range offset surface from speckle matching in this region. We continue to search another 

unprocessed pixel as a reference and repeat the steps above. After all pixels are 

processed, the image has a value that has either failed in unwrapping (like shear margins) 

or has been unwrapped and adjusted to range offset. In this case, the entire unwrapped 

phase has only one refe rence point. This is the only unknown in the range direction to 

calculate absolute velocity. How to estimate this unknown and calculate the absolute 

velocity are the topics to be covered in the next chapter. 
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CHAPTER 6 

 

TWO-DIMENSIONAL SURFACE VELOCITIES OF  

THE EAST ANTARCTIC ICE STREAMS 

 

6.1 Introduction 

    Two-dimensional ice sheet surface velocity is of prime importance in studying ice 

dynamics and mass balance. Methods to obtain two-dimensional surface velocity maps 

include in-situ observations, feature tracking from photogrammetric image sequences 

(Whillans and others, 1993) or optical satellite image sequences (Scambos and 

Binschadler, 1993),  SAR interferometry (Joughin and others, 1998), and speckle  

matching of SAR images (Gray and others, 1998).   

    As discussed in Chapters 2 and 3, interferometry provides an excellent 

measurement of motion in the range direction, and speckle matching provides an optimal 

estimation of azimuth offset. We seek to make full use of the strength of both techniques 

to obtain the best possible result. The two-dimensional surface velocity field will be 

calculated by combining the range motion from interferometry and azimuth motion from 

speckle matching. In fact, Joughin and others (1999) have already used the idea on 

RADARSAT data over the West Antarctic Ice Streams. However, our work is different 

from Joughin and others (1999) in the following aspects. First, we provide a detailed 
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discussion on the calibration models and error analysis. Second, in addition to traditional 

velocity control points, we also use flow directions as velocity control points in velocity 

calibration.  Third, we developed a strip calibration model designed to preserve velocity 

consistency between frames. We first present two-dimensional surface velocity 

calibration models for absolute velocity calculation. Then procedures and tools for 

processing RADARSAT InSAR data to generate a velocity maps are discussed. Also 

presented are analysis, quality assessment of the velocity mosaic, and comparison with 

velocity maps from other investigators. 

 

6.2 Two -dimensional surface velocity 

6.2.1 Velocity control points and velocity calibration 

    We compute the two-dimensional surface velocity for an InSAR pair by combining 

the range motion from interferometry and the azimuth motion from speckle matching. 

Requirements of velocity accuracy for scientific objectives are listed in Table 6.1 (Jezek, 

1999b). Interferometry has excellent accuracy of 4 m/year for range motion. So range 

motion from interferometry is used as the range component in velocity. For the azimuth 

direction, speckle matching is the only way to generate motion in this direction using one 

InSAR pair. Fortunately, according to discussion in Section 3.4, the accuracy of azimuth 

motion from speckle matching is 10 m/year, better than speckle matching’s range motion 

accuracy of 20 m/year. Although the accuracy of the speckle matching method is limited 

by pixel resolution, the azimuth motion from speckle matching has a better accuracy than 

range motion from speckle matching. This is because, first, the pixel spacing in the 

azimuth direction is smaller than the pixel spacing in the range direction (for 
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RADARSAT standard beams).  Second, the range offset is dependent on the baseline and 

surface elevation. These factors contribute errors to the range motion. While the azimuth 

shift is almost independent to surface elevation, the shift due to orbit crossing is linear.  

 

 
Science Product Velocity Accuracy 

Requirement 
Grid Spacing Contribution to 

Measurement 
Objective 

Continental coverage 
of velocity field 

10% in speed, 5° in 
direction 

5 km grid Flow styles 
Flow variation 
Balance velocity   

Selected study areas 
(e.g., East and West 
Antarctic Ice Streams, 
Lambert Glacier)  

5 % in speed, 5 ° in 
direction 

1 km grid Mass balance 
Ice dynamics 
Nonsteady flow 
Calving flux 

Grounding line 
velocities 

20% in speed, 10° 
in direction 

500 m grid within 
20 km of the 
estimated 
grounding line 

Grounding lines 

 

Table 6.1 Velocity product requirements (from Jezek 1999b) 

 

  We seek the velocity vector 
 

xVrVV xr
~~ +=                                          (6.1) 

where Vr and Vx represent the magnitude of the velocity components in the cross track 

and along track directions respectively,  r~  and x~  are unit vectors. 

    Vr is calculated from the interferometric phase Φ that is presumably unwrapped, 

reconciled, and the topography corrected phase. So phase Φ can be expressed as 

motionΦ+Φ=Φ 0                                          (6.2) 
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where Φ0 is the constant phase and Φmotion is the phase due to surface motion in the range 

direction. Then the ground motion in the cross track direction, Vr, is 

)(
)sin(4)sin(4

0Φ−Φ
−

=Φ
−

=
r

motion
r TT

Vr
αβπ

λ
αβπ

λ
                    (6.3) 

where λ is wavelength, T is time interval between the two observations, β  is the 

incidence angle, and αr  is the surface slope angle in the cross track direction. In (6.3), 

once Φ0 is known, the phase Φ can be converted to absolute speed Vr on ground in the  

cross track direction. 

        Azimuth motion Vx can be calculated from the measured azimuth offset δ (the 

subscript x representing the azimuth direction is omitted because only the azimuth offset 

is used in this chapter). A linear model is used to express the azimuth shift δ as  

motionxaraa δδ +++= 210                                       (6.4) 

where r and x are the slant range image coordinates in the range and azimuth directions, 

and δmotion is the azimuth offset due to surface motion in pixel’s unit. a0, a1, and a2 are 

coefficients of the azimuth offset model. The azimuth speed Vx can be calculated as 
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                       (6.5) 

where Rx is the pixel spacing in the azimuth direction, and αx  is the surface slope angle 

in the azimuth direction. Parameters a0, a1, and a2 are related to InSAR geometry. That is, 

a0 is related to the parallel baseline, a1 is related to the orbit squint angle, and a2 is related 

to the change of the squint angle along the flight track. Since the squint angle is almost a 

constant for a 100 km frame as used in this research, we ignore this term. For generality, 
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we include it in the derivation. Once the three coefficients (parameters) a0, a1, and a2 are 

known, absolute azimuth speed Vx can be calculated from the measured azimuth offset δ. 

    In Equations (6.3) and (6.5), there are four unknowns for the calculation of velocity. 

They are Φ0 , a0, a1, and a2. Once the four unknowns are solved, the two-dimensional 

surface velocity can be calculated. 

    Velocity calibration solves the four unknowns in the offset models using velocity 

control points (VCP) and then calculates the surface velocity. Normally, VCP refers to a 

point with known position and velocity. In this research, we have expanded the definition 

of VCP and include the points with known velocity and points with known flow 

directions. In the following sections we will create observation equations in the 

calibration model for these types of velocity control points 

 

Point with known velocity 

    A velocity control point P has known velocity component Ur in the cross track 

direction and Ux in the azimuth direction. A stationary point is a special case in which 

Ur=0 and Ux=0.  From Equations 6.3 and 6.5, we can create observation equations for a 

velocity control point as  

Ur
T r

=Φ−Φ
−
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)sin(4

0
αβπ

λ
                                     (6.6) 
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Points with known flow directions  

    Flow direction has been used to visually inspect velocity vectors on an image. Flow 

direction is also used to convert range motion to two-dimensional motion (Schmidt, 

1999; Fatland, 1998). In this research, it is used to calibrate velocity for areas where there 

are no other control points. A flow direction observed from a flow stripe defines a ratio of 

range motion and azimuth motion, as shown in Figure 6.1. This relationship forms an 

observation equation for velocity calibration as 

Dx
Dr

Vx
Vr

=                                            (6.8) 

where Dr and Dx are cross track components and along track components of flow 

direction in a horizontal plane.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Flow direction control point 
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    This type of point relies on the flow stripe to identify flow direction. In some areas 

where ice dynamics changes, flow stripes may not represent the true flow direction 

(Casassa and others, 1991). A carefully study is required before selecting the flow 

direction as a control point. 

    For a flow direction point shown in Figure 6.1, if the flow direction in the slant 

range single look complex image coordinate system is (dr,dx), then the flow direction in 

the local ground coordinate system is  

)sin( r

Rrdr
Dr

αβ −
⋅

=                                              (6.9) 

x

Rxdx
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⋅

=                                            (6.10) 

Because velocity components and flow vector components have the relationship 

 DrVxDxVr ⋅=⋅                                              (6.11) 

Substitute Equations (6.3), (6.5), (6.9), and (6.10) into equation (6.11) to yield 
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Canceling terms in (6.12) and the equa tion can be simplified to  

Rrdrxaraadx ⋅−−−=Φ−Φ )()(
4 2100 δ
π
λ

            (6.13) 

 

    Each velocity control point creates one or two observation equations. Then, four 

unknowns can be solved by least squares adjustment techniques. Since there are two 

observation variables in one equation, we use least squares model of conditional 

equations with unknown parameters (Mikhail and Ackermann, 1976). 
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6.2.2 Baseline  refinement 

    The baseline distance is used in calculation to subtract the topographic phase from 

the measured phase. Initially, the baseline is calculated from the satellite orbit ephemeris 

and may have errors up to several meters. Zebker and others (1994) and Joughin (1995) 

have discussed baseline refinement with ground control points. We follow the work of 

Joughin (1995) and extend the model to include velocity points and points with known 

flow direction. 

    In a 100 km frame, a baseline can be modeled as a linear function of azimuth 

coordinates x. The model has four parameters:  

Bn0: Perpendicular baseline at the image center 

Bp0: Parallel baseline at the image center 

dBn: Perpendicular baseline change rate along flight direction. Unit is m/m 

dBp: Parallel baseline change rate along flight direction. Unit is m/m 

Then the perpendicular baseline at pixel position (r,x) can be expressed as 

Bn=Bn0+dBn(x-x0)Rx                  (6.14) 

where x0 is the azimuth coordinate at image center and Rx is the azimuth pixel spacing. 

Similarly, the parallel baseline at the pixel position (r,x) can be expressed as 

Bp=Bp0+dBp(x-x0)Rx                  (6.15) 

From Equation (2.4), for case there is no motion, we have  
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2
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r
B

r
B +

∆
−∆−=− ξθ                           (6.16) 

The left side can be expressed as 
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dddc BpBnBB θθθξθξθ cossin))sin(()sin( +=+−=−        (6.17) 

Combining (6.16) and (6.17), the range shift can be expressed as 
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If we represent ∆ as a phase difference, then (6.18) can be written as  
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where Φ is the unwrapped phase, after removing the baseline and the DEM effect, Φtopo 

is the phase due to the baseline and DEM, and Φ0 is the phase adjustment to an absolute 

reference. Since Φ refers to the phase without DEM and baseline effect in this chapter, 

Φ+Φtopo represents the measured phase after phase unwrapping.  

    Equation (6.19) assume stationary control points.  If the surface is moving with 

phase Φmotion, then (6.19) becomes 
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Substitute (6.14) and (6.15) into (6.20), yield 

motiontopo Φ−Φ−Φ+Φ 0
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So the range velocity Vr can be expressed as  
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In this expression, there are four unknowns: Bp0, dBp, Bn0, and dBn. Because Bp is very 

small when compared to r0, the term 
0

2

2r
Bp  can be approximated by 

0

2
0

2r
Bp .  

    For the azimuth direction, the velocity model is derived by Equation (6.5). It has 

three parameters. Together, range and azimuth velocity models have seven parameters. 

Here Φ0  is determined from velocity calibration. 

    By applying (6.3) and (6.5) to the observation equations of various velocity control 

points, the baseline refinement observation equations can be created. Using a least 

squares adjustment model, the seven parameters mentioned above can be solved. Among 

those seven parameters, four are baseline parameters. 

Assume X is unknown with elements 
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Then observation equations for each type of control points can be derived with the use of 

steps similar to those shown in Section 6.2.1. For velocity control point P with velocity 
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Ur in the cross track direction and Ux in the along track direction, two observations 

equations are  

[ ]
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
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[ ] [ ]UxTRxXxRxrRxRx xαδ cos0000 −⋅=            (6.25) 

     

    For a flow direction control point P with flow direction vector (dr,dx) in slant range 

SLC image, the observation equation is  
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6.2.3  Strip calibration 

Strip configuration 

    In Section (6.2.1), the velocity calibration is based on a single frame of InSAR data. 

For InSAR data used in this research, a strip of InSAR data is divided into frames 100 km 

long and with 10% overlap between frames. If the velocity calibration for each frame is 

independent, the velocities calculated from two neighboring frames in the overlap area 

might have large difference because of the different quality and distribution of velocity 

control points for each frame. Theoretically, velocities calculated from the two frames for 

the overlap area should be the same. This condition can be used as a constraint in a strip 

calibration.  
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    Figure 6.2 is the configuration of a strip with M frames. Each frame has its own 

velocity control points. In the overlap area of any two neighboring frames, some points 

are selected as tie points. What follows is a discussion on how to use these points in the 

velocity calibration. 

    As discussed in Section 6.2.1, each frame has its own velocity control points and 

unknowns. For the ith frame, the velocity calibration equations are 

iii BXA =                                            (6.27) 

where Xi is a vector of four unknowns for the ith  frame  
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Ai is an Ni by 4 matrix and B is an Ni by 1 matrix. Ni is the number of the observation 

equations for the ith frame.  

    For a tie point in the overlap area of the ith frame and i+1st frame, the phase in the ith 

frame and i+1st frame can be expressed respectively as  

motion
ii Φ+Φ=Φ 0                                         (6.29) 

motion
ii Φ+Φ=Φ ++

0
11                                        (6.30) 

Subtracting (6.30) from (6.29),  yields 

1
0

1
0

++ Φ−Φ=Φ−Φ iiii                                        (6.31) 
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Figure 6.2:  Frame configuration of strip calibration 
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In the azimuth direction, the azimuth offsets from the ith frame and i+1st frame can be 

expressed respectively as  

motion
iiiiii xaraa δδ +++= 210                                     (6.32) 

motion
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2
11

1
1

0
11                                  (6.33) 

Subtracting (6.33) from (6.32), yield 
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(6.31) and (6.34) are two equations for each tie point. Assume there are ki tie points on 

the overlap area of frame i and frame i+1, then the 2*ki equations have the matrix format 

as  
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   (6.35) 

 

In the left matrix, the upper index refers to the frame number, while the lower index 

refers to the point number. Using new notations, Equation (6.35) can be simplified as  
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where Ci and C’i  are matrices of size 2*ki by 4, and  Di is a matrix of size 2*ki by 1. 
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Combining all the observation equations for all the frames and all the tie point 

observation equations for the overlap areas, the new observation equations for the strip of 

M frames are 
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In this model, 4*M unknowns for M frames are solved. Since there are some equations 

contain two observation variables, least squares model of conditional equations with 

unknown parameters is used to solve parameters (Mikhail and Ackermann, 1976). The 

model minimizes errors for the overlap areas and preserves the consistency between 

frames. For a frame with no velocity control points, we cannot calibrate based on a single 

frame. By using tie points in the overlap areas with other frames, the four unknowns for 

this frame can be solved and the velocity can be calculated in the strip calibration model. 

So this technique improves the accuracy of the velocity calculation for the entire strip. 

Moreover, it solves problems for frames in which there are no velocity control points. 

The velocity control points in other frames can contribute to the calibration through tie 

points between frames. Examples in Section 6.2.4 will show how velocities are improved 

using this technique. 
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6.2.4  Examples 

    Frames 5527 of orbit 9851/10194 are used as an example to demonstrate the 

methods of velocity calibration, baseline refinement, and strip calibration. These methods 

use any type of velocity control points or combination of velocity control points. Flow 

direction control points are a new type of velocity control point used in this research. 

Figure 6.3 shows velocity control points selected for frame 5527 in the calibration tool. 

The flow direction is shown as a line segment, and the point is marked as a circle in the 

middle  of the line segment. The flow directions are created by drawing a line on the slant 

range SAR image along the flow stripes. Using the 24 flow directions as shown in Figure 

6.3, 24 observation equations are created using 6.1 and the parameters for the range and 

azimuth offset model are solved as Φ0=-352.0649, a0=4.2927,  a1=8.2624e-5. The 

parameters are solved using only flow directions. 

    By substituting these values into Equations (6.3) and (6.5), the velocity components 

Vr and  Vx, for any given point (r,x), can be calculated as 

)0649.352(
)sin(4

+Φ
−

=
rT

Vr
αβπ

λ
                                  (6.38) 

)000082624.02927.4(
cos

r
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Rx
Vx

x
−−= δ

α
                                (6.39) 

     

    The velocity vectors are displayed in Figure 6.4. An enlarged view of the left 

bottom corner of the frame is shown in Figure 6.5. The vectors fit the flow stripe very 

well. The calibration tool will be discussed in the next section. 
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    We have conducted tests on the same frame using stationary points. Table 6.2 lists 

the parameters derived using two types of velocity control points 

 

 Φ0(rad) a0(pixel) a1(pixel/pixel) 

Flow directions -352.0649±1.1 4.2927±1.1e-5 8.2624e-5±2e-12 

Stationary points -400.379±7.066 4.207±3.57e-4 8.0128e-5±6e-12 

 

Table 6.2: Calibration parameters from different type of velocity control points 

 

    Baseline refinement is performed using stationary velocity control points. The 

refined baseline and the baseline estimated from orbit parameters are listed in Table 6.3. 

The baseline from orbits is estimated by Vexcel’s software PHASE. 

 

 Bn  (m) dBn (m/m) Bp (m) DBp (m/m) 

Baseline from orbit 

ephemeris 

191.86 3.75e-5 -95.11 -6.18e-6 

Refined baseline 200.97±3.52 3.32e-6±1.6e-9 -79.87±7.7e-3 -2.3e-5±2.3e-11 

 

Table 6.3:  Refined baseline and baseline from satellite orbits 

 

    The test for strip calibration is performed on frames 5527 and 5544, between which 

there is a 10 km wide overlap area. First, each frame is calibrated independently using its 

own velocity control points, then 100 tie points are added in the overlap area and the strip 
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calibration model is applied as discussed in 6.2.3 to calculate the new parameters for each 

frame. Table 6.4 lists the results of these parameters. 

 

 Φ0(rad) a0(pixel) a1(pixel/pixel) 

5527 -400.379 4.2070 0.000080128 Frame 

calibration 5544 -260.424 -1.9727 0.000068165 

5527 -358.734 4.224159 0.00007495 Strip 

calibration 5544 -274.013 -1.982954 0.000071 

 

Table 6.4: Calibration parameters from frame calibration and from strip calibration 

 

    As mentioned above, parameters Φ0, a0, and a1 are related to the InSAR geometry. 

Since satellite orbits are quite smooth and change gradually along the flight direction, 

parameters Φ0, a0, and a1 for frames in a strip are correlated. The strip calibration acts as 

a “smoother” to smooth the parameters derived from each individual frame. For example, 

a1, a parameter related to orbit squint, changes from 0.000080128 for frame 5527 to 

0.000068165 for frame 5544 when velocity calibrations are performed independently for 

each frame. But when using strip calibration, a1 changes from 0.00007495 for frame 5527 

to 0.000071 for frame 5544. The jump of a1 between the two frames becomes smaller.  

    To demonstrate how strip calibration improves the velocity, velocity differences for 

the overlap area from both frames are calculated.  For frame based calibration, the 

velocity difference has a mean value of 4.39 m/year and a standard deviation of 6.72 

m/year. The mean value of 4.39 m/year results from two frames using different control 
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points, different distribution, as well as a slightly different geometry between the two 

frames.  When strip calibration is used, the velocity difference has mean value of 0.55 

m/year and a standard deviation of 4.963 m/year. The systematic bias is almost 

eliminated because tie points are used to balance the parameters for the two frames. The 

standard deviation is also reduced from 6.7427 to 4.9628. The improvement for the 

standard deviation is not so significant because the variation is mainly due to the random 

noise of the phase and speckle matching.  
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Figure 6.3:  Flow direction control points are selected in velocity calibration 
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Figure 6.4: Velocity vectors after calibration using flow directions shown in Figure 6.3 
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Figure 6.5: Enlarged view of the left bottom corner of the Figure 6.4 
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6.3 Velocity mosaic of the East Antarctic Ice Streams  

6.3.1 Data 

    There are several AMM-1 InSAR pairs covering the East Antarctic Ice Streams as 

shown in Figure 6.6 The orbit numbers of the first cycle of the InSAR pairs are 9822, 

9851, 9852, 9865, and 9866. All are ascending orbits. Three of them (9822, 9851, 9865) 

cross the Bailey Glacier, Slessor Glacier, and the Recovery Glacier. Two of them (9852, 

9866) pass along the Filchner Ice Shelf. These pairs cover most areas of the Recovery 

Glacier, the Slessor Glacie r, and the Filchner Ice Shelf, to which the two glaciers feed.  

The data received from the Alaska SAR Facility (ASF) have been cut into frames with a 

length of 100 km for each frame. There is 10% overlap between frames. The data are 

valuable not only because they cover the two large glaciers, but also because they extend 

south 80° latitude where RADARSAT normal mode and other satellites (e.g, ERS 1/2) 

are unable to reach.  Detailed descriptions and characteristics of the data are listed in 

Table 6.5 
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Orbit 
pair 

A/D Mode # of 
frame

s 

Incidenc
e angle 

Baseline  
Bn (m) 

Baseline  
Bp  (m) 

Dates 
(1997) 

9822 

10165 

A S7 5 47º 206.3 215.8 9/21 

10/15 

9851 

10194 

A S2 5 27.5º 95.9 196.8 9/23 

10/17 

9852 

10205 

A S2 4 27.5º 93.5 190.1 9/23 

10/17 

9865 

10208 

A S2 5 27.5º 59.5 127.8 9/24 

10/18 

9866 

10209 

A S2 4 27.5º 56.6 122.6 9/24 

10/18 

 

Table 6.5: Descriptions of InSAR data of the East Antarctic Ice Streams 

 

    In addition to SAR data, a surface elevation model of the Antarctic (Liu, 1999; 

Jezek, 1999c)  and  tidal data for Filchner Ice Shelf are used in generating surface 

velocity.  The surface elevation model has a vertical accuracy of 10 meters for the areas 

of the East Antarctic Ice Streams (Liu, 1999). The tidal data are from a high resolution 

barotropic tidal model of the Weddell Sea (Robertson and others, 1998; Padman, 2000) at 

the times of the data acquisitions.  
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6.3.2 Data processing 

    As discussed above, to estimate two-dimensional surface velocity from InSAR data, 

a hybrid scheme of procedures is developed. The scheme includes some interferometric 

procedures from Vexcel’s commercial software package 3dSAR (Vexcel, 1999) and 

some procedures to implement methods developed in this research. Figure 6.7 shows the 

diagram of processing for  surface velocity calculation of the East Antarctic Ice Streams 

from Radarsat InSAR data. In the diagram, the shaded boxes represent the data set and 

the non-shaded boxes represent data processing procedures. The input data for the 

diagram are two single look complex images (inc luding their orbit information), surface 

elevation, and tidal information, if the frame is over the ice shelf. The final result is a 

georeferenced and high-resolution velocity map with information on velocity magnitude 

and direction. The loop from velocity calibration to flattening is for recalculation of the 

motion phase after baseline refinement. The diagram does not suggest the processing as a 

black box system. Rather, the data processing is a complex system involving many 

procedures and many intermediate data sets. Several procedures, such as velocity 

calibration, may require interactive operations. 
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Figure 6.6: Locations of RADARSAT InSAR data used for derivation of surface 
velocities map of the East Antarctic Ice Streams. Orbit numbers and frame numbers are 
marked in the figure. Symbols V indicate areas where stationary control points are 
selected. 
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Figure 6.7: Diagram of processing for  surface velocity calculation of the East Antarctic 
Ice Streams from Radarsat InSAR data. The shaded boxs represent data sets and non-
shaded boxes represent processings.  
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Tie point matching from image pair 

    Tie point matching creates a grid of tie points between the two SLC images. The tie 

point matching is based on cross-correlation matching on speckle described in Chapter 3. 

The matching results are range offsets and azimuth offsets of tie points with sub-pixel 

accuracy on an evenly spaced grid. The initial position prior to matching is determined by 

state vector data and a surface elevation model, as described in Section 2.3.6. The 

matching results of range and azimuth offsets will be used by other procedures. SLC 

image co-registration uses range offsets and azimuth offsets to register two SLC images. 

Velocity calibration uses azimuth offsets, as well as phase, to generate two-dimensional 

surface velocity maps. 

 

Create interferogram 

    The interferogram is formed by conjugate multiplication of two SLC images. 

Because two SLC images are not perfectly aligned, the second SLC image is co-

registered with the first SLC and resampled. The co-registration use a Delaunary 

triangulation based on local co-registration, as described in Chapter 4. The co-registration 

method improves the quality of the interferogram. A by-product of this step is the 

coherence image that is an indicator of the quality of the interferogram. 

 

Interferogram flattening 

    Interferogram flattening is used to remove the DEM and baseline effects on the 

interferogram. Phase due to the DEM and baseline is simulated based on the satellite 
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orbital data and the surface elevation model and subtracted from the measured phase. As 

a result, the flattened phase is only related to surface motion. A separate phase image for 

the DEM and baseline is created for later use. 

 

Phase unwrapping and phase reconciliation 

     Phase unwrapping and phase reconciliation generates an unwrapped phase for the 

entire frame with the same relative reference phase described in Chapter 5. Goldstein’s 

approach (Goldstein and others, 1988) is used to unwrap individual patches. Phase 

reconciliation uses range offsets as global guides to adjust the phase of an individual 

patch. After this step, the unwrapped phase for the entire frame is ready to calculate 

absolute velocity with only one unknown left that will be determined in the velocity 

registration. 

 

Tidal correction 

    If the frame covers areas of floating ice, a tidal correction should be considered. 

Tidal correction adds an additional phase, caused by elevation differences between the 

two cycles to the unwrapped phase 

)(cos
4

12 zzcorrection −+Φ=Φ ψ
λ
π

                                     (6.40) 

where Φcorrection  is the phase after tidal correction, ψ is the incidence angle,  z1 and z2 are 

the surface elevation at the time of the first and second cycles, respectively. In this 

research, two swaths of data (9852 and 9866) were processed for tidal corrections. 
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Velocity calibration 

    Velocity calibration converts the relative azimuth offsets and range phase into 

absolute two-dimensional surface velocity. It is designed to solve several unknowns in 

the azimuth offset model and phase model using velocity control points. The method is 

described in Section 6.2. A velocity calibration tool implemented in the MATLAB 

environment is used to select control points, calibrate velocity, interpolate velocity, and 

view velocity vectors. The interface is shown in Figures 6.3, 6.4, and 6.5. In the main 

window of the interface, a slant range SAR image is displayed. We can select various 

types of control points by clicking points on the slant range SAR image shown in the 

calibration tool. For example, if we want to add a flow direction control point, first click 

the button ‘direction’ to select a control type, and then draw a line along the flow stripe to 

define a flow direction. We can add any type of control points.  The ‘Register’ button will 

calibrate the velocity using the control points and display the velocity vectors on the SAR 

image. The ‘Output’ button will write the velocity result into a file, which contains 

magnitude and direction for each velocity point. The velocity points are in the slant range 

coordinate system. 

 
Velocity mosaicking 

    Velocity mosaicking creates ground range velocity points on a regular grid. This is 

done by the SAR simulation technique described in Section 2.3.6. For a given point 

(X,Y,Z) on the ground, its position (r,a) in the slant range image can be found using  

satellite orbital information. Then the velocity value at (r,a) is assigned value at (X,Y,Z). 

The position simulation is based on the SAR model and the Doppler centroid. Every 
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frame projects the data onto the global coordinate system. For the overlap area between 

two neighboring frames, a weighted average is used. If the joint adjustment is performed 

between frames, the difference of velocity between two frames for the overlap area will 

be very small. 

 

6.3.3 Velocity mosaic 

    We have generated a surface velocity mosaic of the East Antarctic Ice Streams from 

the five swaths of InSAR data. Velocity control points are selected from areas marked as 

V in Figure 6.6. The velocity data are on a regular grid with 200m spacing. The velocity 

data are represented by a velocity magnitude and angle from the X-axis in the polar 

stereographic projection. Figure 6.8 shows the surface velocity mosaic in HSV color 

model in which the velocity magnitude is as hue, SAR image is as intensity and 

saturation is fixed at 0.9.  The velocity vector directions are consistent with flow stripes 

observed from the SAR image. The speed ranges from near 0 m/year in the interior ice 

sheet to 1 km/year on the Filchner Ice Shelf. We will discuss the accuracy and the quality 

of the velocity result in the next section. 
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6.4 Error analysis and quality assessment 

6.4.1 Error analysis 

    Errors in the velocity mosaic of the East Antarctic Ice Streams result from several 

sources and processing procedures. The error sources include random noise in phase and 

speckle matching, baseline error, and velocity control point error. The velocity is the 

vector sum of two components in the range and azimuth directions. After calibration, the 

range motion is calculated by Equation (6.3). The random uncertainty of Vr with phase 

error is 

Φ−
= σ

αβπ
λ

σ
)sin(4 r

Vr T
                               (6.41) 

The azimuth motion is determined by Equation (6.5). The random uncertainty of Vx with 

speckle matching error is 

δσ
α

σ
x

Vx T
Rx

cos
=                                      (6.42) 

The systematic errors in Vr and Vx result from inaccurate parameters Φ0, a0, a1, and a2 

determined by velocity control points and the baseline distance estimates. These can be 

expressed as  

00,
)sin(4

Φ
−

=Φ d
T
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λ
                             (6.43) 
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    The velocity of a point (r,x) with range component, Vr, and azimuth component, 

Vx, is represented by magnitude V and its flow angle α with respect to the X axis of the 

polar stereographic projection of the Antarctic. V and α can be expressed as 

22 VxVrV +=                                                 (6.47) 







+= −

Vx
Vr1

0 tanαα                                          (6.48) 

where α0 is the angle of the flight direction with respect to the X axis in the polar 

stereographic projection. Without losing generality, we assume α0 =0 in the discussion.  

According to error propagation theory, the standard deviation of V is 

2
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∂
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Using the geometric relationships 

αsinVVr =                                                  (6.50) 

αcosVVx =                                                  (6.51) 

Equation (6.49) can be rewritten as 

22222 )(cos)(sin VxVrV σασασ +=                                     (6.52) 

The standard deviation of V is an ellipse with two axis lengths of σVr and σVx. The value 

always varies between σVr and σVx, depending on the flow direction. Similarly, the 

standard deviation of flow direction α is given by 

22
2

22
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2 )(sin
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VxVr
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σασασα ⋅+⋅=                         (6.53) 
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The direction error of the velocity vector is inversely proportional to the velocity 

magnitude. When the velocity increases, the direction error decreases. The direction error 

varies also with flow direction. Given σVx>σVr , then the minimum direction error is 

along the flight direction.  

    There is another type of velocity error related to velocity interpolation. For some 

areas with high decorrelation, there may be no phase data or speckle matching data. The 

velocities for these areas are interpolated from surrounding areas. In many cases, the 

interpolation produces velocities with small additional error. But for areas that are near 

the edge of the frame, or areas of large size low coherence, interpolation will create a 

large additional error. This happens on areas near the grounding line of the Recovery 

Glacier where high decorrelation occurs. The maximum direction error there reaches 25°. 

 
 
6.4.2 Quality assessment 

Visual inspection 

    Quality assessments are made in several ways to verify the quality of the velocity 

mosaic. Speed is displayed on the SAR image as shown in Figure 6.8. The change in 

speed is consistent with glacier regions. Velocity increases when ice moves downstream 

to the Filchner Ice Shelf and then to the sea. 

    Comparison of velocity direction with flow stripes is made. We randomly selected 

73 points on the Filchner Ice Shelf and the ice streams. We measured the angle difference 

between the flow stripe on the SAR mosaic and our velocity vectors. The error 

distribution is shown in Figure 6.9. Figure 6.9 (a) is a plot of error for every point. Most 

points have an angle error less than 3°. Several points have angle error larger than 5° 
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caused by poor interpolation of velocity around the grounding line of Recovery Glacier. 

Figure 6.9 (b) is the histogram of the angle errors. The standard deviation of the error is 

2.89°. Our analysis suggests that the angle error on the Filchner Ice Shelf and the three 

glaciers is better than 5°, except for the grounding area of the Recovery Glacier.  

    Figure 6.10 is a portion of frame 5554 of orbit 9866/10209 displayed in the velocity 

calibration tool. In the figure, ice flow directions are quite diverse and the velocity 

vectors fit the flow stripe very well. If there were larger systematic errors in velocity, it 

would not fit well anywhere. Ice flows down from the Shackleton Range into the Filchner 

Ice Shelf. In the left bottom corner, ice comes from the Slessor Glacier. Because the SAR 

image is slant range, the velocity vectors are also in slant range coordinates. 

    Figure 6.11 shows velocity vectors displayed on a SAR mosaic in which the SAR 

image and velocity vectors are orthorectified and terrain corrected. The area is upstream 

of the Slessor Glacier. There are extens ive crevasses in the area and the flow pattern is 

complex. Our velocity vectors match the flow stripes in the area. 

    Tidal correction is applied to the two swaths over the Filchner Ice Shelf, 9866 and 

9852, using tidal data from  Padman and others (1999). Range offsets are compensated 

for tides using Equation (6.37). Figure 6.12 shows a comparison of the velocity vectors 

before and after tidal correction. Without tidal correction, the velocity vectors have larger 

directional errors for areas where motion is slow. After tidal correction, the velocity 

vectors fit the flow stripe very well, even in the slow motion areas. 
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Compare with the existing velocity data 

    Velocities derived in this research are compared with existing velocities that are 

derived by others. Kim (1999) estimated velocity of 15 points on the Filchner Ice Shelf 

by tracking crevasses between 1963 DISP images and 1997 RADARSAT SAR. He also 

compared his result with velocities derived interferometriclly by Laurence Gray and 

others (1998). Table 6.6 is an expanded table from Kim (1999) adding the velocity result 

derived in this research. The newly added column is labeled as Zhao. The X and Y 

columns are 1963 polar stereographic coordinates of tracking points. Figure 6.13 shows 

the locations of the tracking points at time 1997 marked as numbers 1 to 15.  The 

comparison of velocities between Zhao and DISP is shown in Figure 6.14(a). The 

comparison of velocities between Zhao and Gray is shown in Figure 6.14(b). The error 

bar used is 15 m/year for our data, 5.8 m/year for DISP (Kim, 1999), and 20 m/year for 

Gray and others (1998).  The velocities derived in this research are 8.5 m/year less than 

velocity from DISP. We already know one problem that contributes this systematic bias. 

This is location difference between the two measurements. Velocity value from feature 

tracking should be assigned to the middle position of the feature on 1963 DISP and 1997 

SAR image. But Kim (1999) assigned to the position of feature on 1963 DISP. Take 

consideration of this factor of location difference, the systematic bias will be further 

reduced. The Gray velocity is 8.3 m/year higher than velocity from DISP. Since the Gray 

velocities did not apply  tidal correction, they are higher than the true velocity. 
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Point # X 
(m) 

Y 
(m) 

DISP 
(m/a) 

Zhao 
(m/a) 

Gray 
(m/a) 

1 -697667 904019 667.8 651.3 664.1 

2 -711063 911713 692.6 707.9 702.4 

3 -723864 920418 723.6 723.0 739.1 

4 -736775 930423 755.6 745.4 767.7 

5 -737826 931570 756.0 748.2 767.7 

6 -738719 932874 754.3 750.0 770.4 

7 -741459 934817 765.3 765.1 772.8 

8 -743402 936656 762.5 764.7 780.8 

9 -744066 938107 785.3 773.1 787.9 

10 -745678 939910 781.8 773.1 787.9 

11 -746974 941101 790.8 774.1 789.7 

12 -750669 944516 799.2 780.7 807.6 

13 -757569 951627 829.5 797.3 825.0 

14 -759881 955427 832.4 813.2 836.7 

15 -769181 968037 846.9 848.2 869.9 

Error   5.8 m/a 15 m/a 20 m/a 

 

Table 6.6: Velocities on the Filchner Ice Shelf from different sources 

 

    There are also velocity data on the Filchner Ice Shelf (locations are shown in Figure 

6.13 and marked as A-I) derived by feature tracking from Landsat MSS images of 1986 

and ERS-1 SAR images of 1993 (Vaughan and Jonas, 1996). The velocities are compared 

with velocities derived in this research in Table 6.7 and Figure 6.14 (c). 
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Points Latitude  Longitude Vaughan 

(m/a) 

Zhao 

(m/a) 

A -78.407 -37.184 671.0±36 799.2±15 

B -78.425 -37.193 666.8±36 794.5±15 

C -78.479 -37.242 671.0±36 782.5±15 

D -78.61 -37.314 638.9±36 751.2±15 

E -78.647 -37.322 642.5±36 740.5±15 

F -78.781 -37.3 870.0±36 688.9±15 

G -78.665 -38.413 784.6±36 842.1±15 

H -78.956 -38.335 687.3±36 760.6±15 

I -79.11 -38.24 879.3±36 738.6±15 

 

                Table 6.7: Velocities from Vaughan and Jones (1996) and this research 

 

    The comparison shows that velocities derived in this research are about 100 m/year 

less than velocities from Vaughan and others (1996), except for point F and I where there 

are local peaks. Such peaks do not exist, neither in contours of Figure 6.4 nor in contours 

from Schmidt and others (1999).  The systematic error seems to be caused by 

independent georeferences of the Landsat MSS mosaic and ERS-1 mosaic (Sievers and 

others, 1989; Roth and others, 1993). DISP images are registered with the SAR mosaic; 

only a relative error of registration contributes to velocity error (Kim 1999). 
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(a) 
 
 
 

 
(b) 

 
 
 

Figure 6.9  Velocity angle error distribution 
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Figure 6.10 Velocity vectors on slant range SAR image. Image center:  33°16’ W,  
80°26’ S. 
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Figure 6.11: Velocity vectors upstream of Slessor Glacier. Image center: 17°41’ W, 
79°19’ S. 
 
 
 
 
 
 

500 m/a 

20 km 
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(a) 

(b) 
 
Figure 6.12 Velocity vectors before tidal correction (a) and after tidal correction (b). 
Image center: 35°57’ W, 79°30’ S. 

500  

20 km 
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Figure 6.13 Velocity point locations on the Filchner Ice Shelf. 
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Figure 6.14 Comparison of velocities on the Filchner Ice Shelf 
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b

c
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CHAPTER 7 

 

THE EAST ANTARCTIC ICE STREAMS 

 

7.1 Introduction 

Ice streams are large rivers of ice that wind through the Antarctic Ice Sheet.  Ice 

streams drain a significant fraction of the ice sheet (Drewry and others, 1982). Ice 

streams are also important because of their potential role in modulating the response of 

the ice sheet to climate change. The East Antarctic Ice Streams, including Recovery, 

Slessor, Bailey and RAMP glaciers form the dominant drainage into the Ronne-Filchner 

Ice Shelf (Gray and others, 2001). The extent of the East Antarctic Ice Streams range in 

latitude from 78° to 83°S, and in longitude from 0° to 40°W. The lengths of both the 

Slessor and Recovery Glacier are more than 1000 km each from the coast to the first 

indications of streaming flow.  

Compared with the West Antarctic Ice Streams, the East Antarctic Ice Streams are 

far less studied (Hughes, 1975; Bentley, 1987; Bindschadler, 1991). There are many 

unanswered questions regarding their physical characteristics, flow dynamics, and mass 

balance.  For instance, where are the margins of the East Antarctic Ice Streams?  How do 

the East Antarctic Ice Streams vary in size?  How does surface velocity vary across and 
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down the Antarctic Ice Streams?  What is the ice flux through each stream?  Are the East 

Antarctic Ice Streams thinning or thickening? Are the East Antarctic Ice Streams stable?  

For the first time a data set is available for systematically studying the East 

Antarctic Ice Streams.  Data acquired dur ing the Radarsat Antarctic Mapping Project 

(RAMP) provide a continental-scale and high-resolution view of the ice streams (Jezek 

and others, 1998, Jezek, 1999a).  Interferometric data acquired over the East Antarctic Ice 

Streams provide an unparalleled opportunity to study ice stream dynamics (Forster and 

others, 1998; Gray and others, 1998). As noted, we have derived surface velocity and 

coherence maps from the interferometric data. Using these results, as well as other data, 

we conducted a scientific analysis of ice dynamics and mass balance of the East Antarctic 

Ice Streams. 

In this chapter, we analyze flow patterns and ice dynamics of the East Antarctic 

Ice Streams. Several new findings are identified. Then mass distribution and mass 

balance are calculated to study the stability of the ice streams.  

 

7.2 Ice flow dynamics of the East Antarctic Ice Streams  

7.2.1 Ice Stream Margins  

Ice stream margins are boundaries between fast moving ice and slow moving ice. 

They provide general knowledge about ice stream geography and help answer questions 

such as how long and how wide are ice streams? Ice stream margin locations are also 

important in studying mass balance and ice dynamics. Prior to the RADARSAT-1 

Antarctic Mapping Mission (AMM-1) in 1997 (Jezek, 1998), margins of the East 

Antarctic Ice Streams were not precisely identified. Using the SAR mosaic of Antarctica 
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produced by the AMM-1 mission, Jezek and Sohn (unpublished) manually extracted 

shear margins for the East Antarctic Ice Streams, including Bailey Glacier, Recovery 

Glacier, Slessor Glacier, and two newly discovered twin glaciers called RAMP glacier 

and Blackwall ice stream. For the most part, shear margins are well delineated by strong 

radar returns from lateral crevasses. From the SAR imagery, shear zones are normally 

brighter than the slow motion areas. 

Although shear margins can be extracted from the SAR mosaic, the results are 

less accurate for slow, differential motion areas in the upstream reaches of the glacier. In 

this research, the coherence mosaic, a by-product of the interferometry process, is used as 

additional information for shear margin extraction. Coherence is sensitive to differential 

motion and temporal changes, and provides rich information for shear margin 

identification. The velocity map is also used in determining shear margins because it 

provides actual information on how velocity changes laterally across the flow. Using all 

three data sets, we have identified shear margins of the East Antarctic Ice Streams as 

shown in Figure 7.1.  

In the figure, shear margins are drawn for Bailey Glacier, Slessor Glacier, 

Recovery Glacier,  RAMP Glacier, Blackwall Ice Stream, and the Filchner Ice Shelf. 

Known features are marked with their names. Arrows indicate flow directions. There are 

four newly discovered and unnamed features that are respectively labeled A, B, C, and D. 

Feature A is a small ice rise on the east edge of the Filchner Ice Shelf that diverts the ice 

from the Bailey Ice Stream and Coats Land. The ice rise will be discussed in detail in 

Section 7.2.3. Features B, C, and D are three islands of slow moving ice in the upstream 

portion of the Slessor Glacier. They are associated with high bed topography, and 
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strongly influence the flow pattern of the ice stream.   SFG&FIS indicates that ice in this 

part of the ice shelf is from the Support Force Glacier (SFG) and Foundation Ice Stream 

(FIS). In the East Antarctic ice stream system, Slessor and Recovery glaciers are almost 

parallel and are separated by the Shackleton Range. They flow from east to west, and 

then turn north where they merge into the Filchner Ice Shelf. The length of these two 

glaciers is more than 1000 km from the coast to the onset of streaming flow. Recovery 

Glacier has two, twin tributaries: RAMP Glacier and Blackwall Ice Stream. The twin 

glaciers have very similar geometrical and physical characteristics. 

To demonstrate how powerful coherence is in determining shear margins, the 

SAR image and the coherence image are compared in the upstream portion of the Slessor 

Glacier (Figure 7.2). Due to the small differential motion across the shear margin, the 

SAR image in Figure 7.2 (a) does not clearly capture the contrast between fast and slow 

motion. In Figure 7.2 (b), the dark line defines the shear margins where ice deformation 

due to shear motion causes temporal decorrelation. 

 

Controls on Ice Streams  

Using AMM-1 estimates of ice stream margin positions, we have compared the 

location of ice streams with bedrock topography from BEDMAP (Lythe and others, 

2000).  As shown in Figure 7.3, the positions of the East Antarctic Ice Streams are 

correlated with topography.  The generally convex shape of the East Antarctic Ice 

Streams coupled with correlation with bedrock topography suggests that these ice streams 

are more similar in dynamics to Jacobshavn Glacier than to the West Antarctic Ice 

Streams. That is, the glaciers are fast flowing because of a glaciostatic head funneled 



 142 

through constricted channels in the glacier bed. This is unlike the WAIS which are fast 

flowing because of a well- lubricated bed.  
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Figure 7.1:  Shear margins of the East Antarctic Ice Streams 

100 km 
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(a) 

(b) 
 
Figure 7.2: Shear margins on SAR image (a) and coherence image (b) 
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      Figure 7.3 Ice stream margins and BEDMAP subglacial topography

100 km
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7.2.2 Ice flow pattern 

East Antarctic Ice Streams surface velocities are shown in Figure 6.8 and reveal 

flow direction and speed in the region. A more detailed view of flow patterns, velocity 

contours and longitudinal and cross flow velocity profiles are presented in this section. 

We also compare these data with profiles of the West Antarctic Ice Streams. 

Figure 7.4 shows velocity contours drawn on the SAR image. The contours range 

from 50 m/year to 1000 m/year with an interval of 50 m/year.  Dense contours appear in 

areas where the Recovery Glacier narrows down and merges into the Filchner Ice Shelf. 

There is also a local peak in velocity of 900 m/year. The local velocity peak is probably 

related to the large surface slope and narrow discharge channel around the grounding line 

of the Recovery Glacier. The contours on the Filchner Ice Shelf indicate that velocity 

continuously increases when ice moves to the sea through the Filchner Ice Shelf. This 

finding contradicts that of Vaughan and others (1996) whose result has a local velocity 

peak near the east side of the Filchner Ice Shelf. Our result also shows that the fastest ice 

on the Filchner Ice Shelf is associated with Recovery Glacier . outflow, rather than the 

center line of the Filchner Ice Shelf channel. This finding is consistent with velocity 

contours derived from ERS-1/2 InSAR over the Filchner Ice Shelf (Schmidt and others, 

1999). 

We also investigated the longitudinal and cross profiles over the East Antarctic 

Ice Streams. Figure 7.5 shows the profile locations. Profiles A, B, and C are longitudinal 

profiles for the Bailey, Slessor, and Recovery glaciers, respectively. Profiles D, E, F are 

cross profiles on the Filchner Ice Shelf at the downstream, midway, and upstream 

location respectively. Figure 7.6 shows the longitudinal profiles of the three glaciers. The 
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solid lines are surface elevation (upper) and bedrock elevation (lower). The dashed line is 

surface velocity. The breaks in velocity curves are due to the unavailability of InSAR 

data. The grounding line points are at 280 km, 315 km, 304 km points for the Bailey,  

Slessor, and Recovery glaciers, respectively.  

The convex surface of Bailey and Slessor Glacier restore bedrock topography, 

which lies below sea level. Velocity is slow until ice merges into the Filchner Ice Shelf. 

Recovery Glacier has the most complex surface topography, suggestive of a non-

equilibrium glacier.  Recovery Glacier velocity increases nearly linearly from the 850 km 

point to the point around 380 km. Near the 300 km point, the velocity reaches a local 

peak of 900 m/year. On the Filchner Ice Shelf, velocity increases nearly linearly to the 

coast (Fig. 7.9). The driving stresses for the three parts of the ice shelf are below 105 Pa 

as shown in Figure 7.7. 

Figure 7.7 shows three cross profiles at the different locations. Profile D crosses 

the Filchner Ice Shelf. The left side is from Coats Land and the right side is on Berkner 

Island. The high velocity segment is associated with floating ice. The velocity peak is 

around the 180 km point, which is associated with Recovery Glacier. Profiles E and F 

suggest a good correlation between fast moving ice and bed topography.  

We reconstructed the surface elevation for Recovery Glacier from basal stress and 

ice thickness using profile equations from Paterson (1994). By adjusting basal stress, we 

fit the calculated surface elevation (the dashed line in Figure 7.8 (a)) to fit the true surface 

elevation. The basal stress used is shown as a dashed line at the bottom of the figure. The 

magnitude of the basal stress is shown in Figure 7.8(b). It is compared to the driving 

stress calculated from the ice thickness and surface elevation. Longitudinal ice 
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thicknesses down Recovery Glacier are interpolated and may be in error (Lythe, 2000). 

The surface elevations are also questionable, though comparison of measured flow line  

and DEM derived flow line is very good (Liu and others, 1999).  Consequently, we 

cannot draw strong conclusions about ice dynamics from Figure 7.8. The peaks in the 

driving stress and the basal shear stress at 300 and 650 km could be real or could be due 

to errors in elevation (we think this is unlikely) or errors in bottom topography (very 

likely). If there are these errors, then the driving stress of every glacier may be more 

comparable to that found in WAIS.  

Bentley (1987) has done a comprehensive review on Antarctic ice streams. He 

compared profiles of surface and bedrock elevation and driving stress between the East 

Antarctic Ice Streams and the West Antarctic Ice Streams.  West Antarctic Ice Streams 

have low surface profiles and a small driving stress. It is the lubricated bed that makes Ice 

Streams B, D, and E move fast. Figure 7.9 (a) shows the profiles for Ice Streams B, D, 

and E, which are taken from Bentley (1987). Figure 7.9(b) shows profiles of the surface 

and bedrock elevation and driving stress for the three glaciers of the East Antarctic Ice 

Streams. 
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Figure 7.5: Locations of longitudinal and cross profiles over the East Antarctic Ice 
Streams. Profiles A, B, and C are longitudinal profiles for Bailey, Slessor, and Recovery 
glaciers, respectively. Profiles D, E, and F are cross profiles on the Filchner Ice Shelf at 
the downstream, midway, and upstream locations, respectively. 
 



 151 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
Figure 7.6: Profiles of surface and bedrock elevation and surface velocity for Bailer, 
Slessor, and Recovery glaciers. Dashed lines are surface velocit ies. Sold lines are surface 
elevation (upper line) and bedrock elevation (lower line).   
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Figure 7.7: Profiles of surface and bed rock elevation and velocity for cross profiles D, E, 
and F. Dashed lines are surface velocity. Sold lines are surface elevation (upper line) and 
bed elevation (lower line). The arrows indicate locations of grounding line 

D D 
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(a) 
 

 
(b) 

 
 
Figure 7.8: (a) Surface elevation reconstruction and (b) comparison between basal stress 
(dashed line) and driving stress (solid line).  
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(a) 
 

 
(b) 

 
Figure 7.9: Comparison of surface and bedrock elevation and driving stress between 
WAIS and EAIS. (a) is taken from Bentley (1987) for WAIS; (b) is from the East 
Antarctic Ice Streams in this study.  
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7.2.3 Grounding lines and ice rise 

The grounding line is a transition area that separates inland ice from the ice shelf. 

On the ice shelf, ice floats on water. The grounding line may change horizontally due to 

thinning or thickening of the ice sheet. So the migration of the grounding line is an 

indicator of mass balance and ice dynamics of the ice sheet (Herzfeld, 1994).  

The grounding line can be identified from interferometric SAR processing 

(Goldstein and others, 1993; Rignot, 1996). Due to the vertical movement of floating ice 

and differential movement horizontally between grounded ice and floating ice, 

interferometric fringes change sharply with a high gradient. Fringes are lost or abrupt, 

coherence is very low at grounding lines. Based on the interferogram and coherence, we 

have identified the grounding line around the Filchner Ice Shelf. The grounding lines are 

also confirmed by hydrostatic relationship between ice thickness and surface elevation. In 

Figure 7.10, the solid lines are grounding lines derived from this research. The grounding 

lines are broken because of the unavailability of InSAR data. We have compared our 

grounding lines with previously determined grounding lines from the Antarctic Digital 

Database (BAS, 1998). ADD grounding lines for that area are extracted from Landsat 

imagery by human interpretation based on image tone or surface slope. The comparison 

shows that our grounding lines are consistent with the ADD grounding line, except in the 

area of Slessor Glacier and Bailey Glacier. In these two glaciers, ADD grounding lines go 

further inland than our grounding line. We believe that the area between our grounding 

line and the ADD grounding line in the Bailey and Slessor glaciers area is a large 

grounded zone that just touches the bedrock.  

 



 156 

The isolated, enclosed grounding line near the east edge of the Filchner Ice Shelf 

indicates a small ice rise marked as A in Figure 7.11. This ice rise does not exist in the 

ADD database. The ice rise is very hard to detect from SAR images or optical images, 

because the surface elevation and tone are almost identical with its surrounding area. 

Interferometry detects the differential motion of the surrounding ice and also shows 

abrupt vertical movement at the grounding zone due to the tidal force. Figure 7.11 is the 

ice rise on the SAR and coherence images. The geometric center location of the ice rise is 

at 35°19’W, 79°15’S. The ice rise length is 55 km and the maximum width is 23 km. The 

area of the ice rise is 870 km2. Figure 7.12 shows the interferometric fringes after 

removing for the baseline and topography. The fringes are solely related to surface 

motion in the range direction. On the ice rise the fringes are very sparse due to very slow 

motion on the ice rise. The fringes change abruptly at the grounding line. The bull-eye 

shape fringes are caused by vertical movement when the ice flows over a bump (Rignot 

and others, 1995). The existence of this ice rise has influence on the ice dynamics and 

mass balance of the Bailey Glacier. 
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Figure 7.10: Comparison of grounding lines from interferometry (solid line) and from the 
ADD database (dashed line). 
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Figure 7.11: Ice rise in the SAR image and coherence image 

A 

B 
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Figure 7.12 Interferometric fringes around the ice rise 

10 km 
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7.2.4 RAMP glacier and Blackwall Ice Stream 

Recovery glacier has two tributaries: RAMP Glacier and Blackwall Ice Stream as 

shown in Figure 7.13. The RAMP Glacier starts at about 12°43’W/83°33’S and flows 

about 300 kms north, then merges with the Recovery glacier at the mid point of Recovery 

glacier. The glacier has a uniform width, and the shear margins are clearly visible on the 

SAR mosaic. The Blackwall Ice Stream is similar in shape and length to the RAMP 

glacier. The Blackwall Ice Stream merges into the Recovery Glacier at the point just 

before the grounding zone. The Blackwall Ice Stream shear margins are visible from the 

SAR image, but the contrast is not as high as that of the RAMP Glacier. Table 7.1 

presents a comparison between the physical properties of these twin glaciers.    

 

 RAMP Blackwall 

Shape Pipe shape Pipe shape 

Length 300 km 340 km 

Width 15-20 km 20-25 km 

Velocity 150-180 m/year 150-200 m/year 

Out flux 1.83 km3/a 1.96 km3/a 

 

Table 7.1: Comparison between the RAMP Glacier and the Blackwall Ice Stream. 

 

Longitudinal profiles A-A’ and B-B’of the twin glaciers are compared in Figure 

7.13. The profiles start from their merging point with Recovery Glacier and continue 
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along their centerlines. Figure 7.13 shows surface velocity (a) and surface elevation (b) 

changes along the glaciers. The surface elevation for the RAMP glacier decreases almost 

linearly down the glacier with a slope of 0.005 when moving toward the Recovery 

Glacier. Since the surface elevation in this area is interpolated from contour lines (Liu, 

1999), detailed variations of surface change are lost. Blackwall Ice Stream has a similar 

profile shape of surface elevation.  

Surface velocities of both glaciers are also similar after the 15-km point in the 

profiles. However, velocities for both glaciers are quite different before the 15-km point. 

The profiles suggest that Recovery Glacier is “pulling” the Blackwall Ice Stream and 

“damming” the RAMP Glacier. 
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(a) Surface velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Surface elevation 
 
 
Figure  7.13 Longitudinal profiles of the RAMP (B-B’) and Blackwall  Ice Stream (A-A’) 
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7.3 Mass balance and mass distribution 

7.3.1 Data sets 

The calculation of mass balance requires surface velocity, ice thickness, and 

accumulation rate data. Surface velocities for the East Antarctic Ice Streams are 

generated in this research. The random error is 15 m/year and the systemic error is 20 

m/year. Ice thickness data for the East Antarctic are from the BEDMAP database of the 

British Antarctic Survey (Lythe and others, 2000). The ice thickness on the Filchner Ice 

Shelf is derived from the surface elevation using the hydrostatic conversion model (Lythe 

and others, 2000). The error is better than 60 m.  For areas of Recovery Glacier, the ice 

thickness is determined from model-based interpolation (Lythe and others, 2000). We are 

not confident in the ice thickness data from this area. Accumulation rate data are from 

Vaughan and others (1999). The uncertainty of accumulation rate is around ±5%. 

 

7.3.2 Mass balance calculation 

Mass balance calculations estimate ice thinning or thickening rate for a region that 

is bounded by an input gate, output gate, and flow lines. The ice sheet thickening rate 

∂H/∂t can be expressed as 

S
BSASQoQe

t
H

••

++−
=

∂
∂

                     (7.1)  

where Qe is the volume of ice entering into the region through an input gate in a unit time 

period, Qo is the volume of ice outgoing from the region through the output gate in a unit 
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time period, 
•
A  is the accumulation rate, 

•
B  is the basal melting/freezing rate, and S is the 

area of the region.  

Gate flux Q (represented by Qe or Qo) is calculated from n evenly spaced points. 

Each point has velocity Vi, and ice thickness Hi. Then  

∑
=

=
n

i

ViHiWiQoQe
1

,                      (7.2)  

where Wi is the distance between two neighboring points. Velocity Vi is assumed to be 

depth averaged velocity and is the normal component of the velocity to the gate.  

The random error in gate flux Q is expressed as (Thomas and Bentley, 1978) 
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There is also a systematic error in calculating net flux as   (Thomas, 1978) 

( )[ ] ( )[ ]{ }2
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where ∆Vi and  ∆Hi are random errors in velocity and ice thickness, ∆W is the position 

error for a gate, ∆Vs and ∆Hs are systematic errors for velocity and ice thickness, He and 

Ho  are averaged ice thicknesses across and along the input output gates, Veand Vo  are 

averaged velocities across the input and output gates. 

 

The total error for thickening rate is 
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To study the mass balance of the East Antarctic Ice Streams, four regions are 

defined as shown in Figure 7.14. Regions 1, 2, and 3 are for Bailey Glacier, Slessor 

Glacier, and Recovery Glacier respectively, and Region 4 is for the Filchner Ice Shelf. 

The total area of the four regions is considered as Region 5 for mass balance of the East 

Antarctic Ice Streams. Each region has one output gate and one or more input gates, 

which are marked by a number in the figure. The locations of the gates are selected, 

depending on the availability of velocity data and the velocity data quality.  

In this study, 15 m/year is used for a random error, 20 m/year is used for the 

systematic error. Random error in ice thickness is 20 m. Ice thickness systematic errors 

vary depending on different regions (Lythe and others, 2000). They are 60, 100, 300, 50,  

and  150 meters  for Region 1 to 5 respectively. The accumulation rate error is 5% 

(Vaughan and others, 1999). We choose a maximum position error for a gate as 800 m (4 

pixels in the SAR mosaic of 200 m resolution). Using these errors and measured 

parameters, the gate fluxes are calculated in Table 7.2 
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Gate # Flux (km3/a) Error  (km3/a) 
1    4.30 ±0.04 

2    21.66 ±0.1 

3    14.09 ±0.12 

4    1.83 ±0.18 

5    1.96 ±0.17 

6    3.85 ±0.20 

7    0.24 ±0.28 

8    23.74 ±0.38 

9    2.77 ±0.39 

10    31.34 ±0.36 

11    10.80 ±0.28 

12    77.47 ±0.34 

 

Table 7.2 Gate flux of the 12 gates 

 
 

Region Area 
(km2) 

Input 
(km3/a) 

Accumulation  
(km3/a) 

Output 
(km3/a) 

Thickening 
rate (m/a) 

1 4414.65 4.3±0.04 0.64±0.03 3.85±0.20 0.248±0.06 

2 18897.26 21.66±0.1 2.79±0.14 23.74±0.38 0.037±0.139 

3 35602.04 17.88±0.27 5.16±0.26 31.34±0.36 -0.233±0.215 

4 22428.75 72.74±0.79 4.69±0.23 77.47±0.34 -0.002±0.126 

5 81342.70 57.66±0.63 13.27±0.66 77.47±0.34 -0.080±0.105 

 

Table 7.3: Thickening rate of the east Antarctic Ice Streams 
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For the inland ice streams, we assume 
•
B =0. So, based on Equation 7.1, ice-

thickening rates are calculated as shown in Table 7.3 and Figure 7.14. The results 

indicate that the Bailey Glacier (Region 1) is thickening at a rate of 0.25±0.06 m/year. 

The Recovery Glacier (Region 3) is thinning at a rate of  -0.233±0.215. Slessor Glacier is 

in mass balance. 
•

−
∂

∂
B

t
H

 is insignificantly different from zero for the Filchner Ice Shelf. 

Mass balance for the entire region is also in balance (neglecting basal melting/freezing on 

the ice shelf). 

Gray and others (2001) have also calculated the mass balance on the Filchner Ice 

Shelf in an area similar to Region 4. Their area does not include ice from Bailey Glacier. 

They conclude that the Filchner Ice Shelf is in balance, which agrees with our findings. 

 

7.3.3 Mass distribution 

Ice flux for each tributary of the East Antarctic Ice Streams was calculated. Figure 

7.15 shows the flux distribution. Input gates for Region 4 in Figure 7.14 are used for the 

tributaries feeding into the Filchner Ice Shelf. Fluxes for the RAMP Glacier and 

Blackwall Ice Streams are from gates 4 and 5 in Figure 7.14. Since they feed into 

Recovery Glacier, Recovery Glacier flux includes these two glaciers. Upstream the 

Slessor Glacier is partitioned into three channels, separated by two stationary islands 

marked as C and D in Figure 7.1. The fluxes for the three channels are respectively SL_1, 

SL_2, and SL_3 in Figure 7.15. SL_2 is between islands C and D, SL_3 is between D 

and Shackleton Range. SL_1 is the channel north of island C. 
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From Figure 7.15, we see that Recovery Glacier and Slessor Glacier are the two 

major sources of ice flux into the Filchner Ice Shelf with 31.3 km3 /a and 23.7 km3/a, 

respectively. They account for about 43% and 33% of all the ice feeding into the Filchner 

Ice Shelf. The flux for Recovery Glacier is different from Gray and others (2001) because 

the flux for Recovery Glacier here includes ice from Shackleton Fall that originates from 

the Recovery Glacier. Taking this factor into consideration, our calculation of flux 

distribution is consistent with that of Gray and others (2001). 
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Figure 7.14: Locations of regions and gates for mass balance calculation of the East 

Antarctic Ice Stream (top) and thickening rate for the regions (bottom) 
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Figure 7.15: Mass distribution of the East Antarctic Ice Streams 
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CHAPTER 8 

 

CONCLUSIONS 

 

This research has addressed three issues related to the study of the Antarctic Ice 

Streams. First, we explored technical methods and algorithms suitable for two-

dimensional surface velocity estimation from RADARSAT-1 interferometry data over 

the East Antarctic Ice Streams. Second, we produced the most complete two-dimensional 

surface velocity map and coherence map for the East Antarctic Ice Streams. Third, we 

studied the East Antarctic Ice Stream ice dynamics and mass balance. 

The first two issues were discussed in Chapters 4, 5, and 6 in which newly 

developed or extended methods are used to overcome the limitations of interferometry 

and speckle matching associated with RADARSAT-1 imaging of the ice sheet to generate 

two-dimensional surface velocity from one direction InSAR pairs. To improve 

interferometric coherence over areas with large motion variations, such as fast moving 

glaciers, Delaunay triangulation based co-registration is used to reduce co-registration 

errors. The improvement of the coherence increases the accuracy of phase and the 

coverage of usable phase for areas such as fast moving glaciers. For disconnected phase 

islands in the same frame, phase reconciliation incorporates individual islands into a 

single coverage with the same reference.   This makes the phase for the entire frame 
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computable from only one constant to be solved in the velocity calibration. Velocity 

calibration converts the relative phase from interferometry and azimuth offset from 

speckle matching into absolute velocity. Several models, such as calibration using flow 

directions and velocity strip adjustment, are developed. Tools are also implemented for 

data processing. After processing five swaths of RADARSAT-1 InSAR data, a two-

dimensional surface velocity map with 200 m resolution is produced.  

The third issue is carefully studied in Chapter 7. Based on the surface velocity 

map, coherence map, as well as other data, we have investigated ice flow dynamics in 

several ways. Shear margins for the East Antarctic Ice Streams are identified. Grounding 

lines are updated. A new ice rise is discovered. Mass balance and mass distribution are 

also calculated. 

From this research, we conclude that RADARSAT-1 interferometric data over the 

East Antarctic area are sufficient to derive two-dimensional surface velocity without the 

requirement of multiple look directions. Integrated techniques of interferometry and 

speckle matching are an effective means for calculating two-dimensional surface velocity 

from one InSAR pair. Limitations and drawbacks of the interferometry technique and 

speckle matching technique are reduced or eliminated with the use of the newly 

developed or extended methods. Taking advantage of the strengths of both techniques, 

we are able to produce high resolution and accurate two-dimensional surface velocities 

over the East Antarctic Ice streams wherever InSAR data are available.  

The initial contribution of this research to the methodological literature includes 

Delaunay triangulation based co-registration, phase reconciliation, two-dimensional 

surface velocity calibration using flow directions as well as velocity points, and strip 
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adjustment of velocity. The newly developed and extended methods and techniques 

collectively constitute a comprehensive means for handling technical issues in derivation 

of two-dimensional velocity information of the East Antarctic Ice Streams from 

RADARSAT-1 interferometric data. 

The major substantive contributions of this research are the high resolution, 

accurate two-dimensional surface velocity and coherence maps of the East Antarctic Ice 

Streams, and the first comprehensive analysis of flow dynamics and mass balance of the 

East Antarctic Ice Streams. The surface velocity map covers most parts of Bailey Glacier, 

Slessor Glacier, Recover Glacier, Filchner Ice Shelf, and some parts of the RAMP 

Glacier and Blackwall Ice Stream. The velocity uncertainty is better than 15 m/year. The 

velocity vector directions are consistent with flow stripes observed from the SAR 

imagery. The angle difference is within 5° on the glaciers and the Filchner Ice Shelf. This 

alone confirms that there have been no significant dynamic changes in the East Antarctic 

Ice Streams during the past several hundred years. The velocities are also consistent with 

the velocities derived from other sources such as DISP of 1963 and SAR of 1997 using 

feature tracking over a 34-year period (Kim, 1999). The coherence map reveals rich 

information about geophysical properties of ice streams. Based on the coherence map, we 

updated the grounding lines around the Slessor Glacier and Bailey Glacier. We also 

discover a new small ice rise on the East Side of the Filchner Ice Shelf. The ice rise is 

“damming” Bailey Glacier. This is probably a reason why Bailey Glacier is thickening. 

From the coherence map, as well as other data, we also identify the shear margins of the 

East Antarctic Ice Streams. The upstream flow of the Slessor Glacier is complex due to 

convergence and divergence of ice flow around several islands of slow ice. The 
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comparison of the margin map with the BEDMAP subglacial topography strongly 

suggests that the bottom topography control the position of these ice streams. Mass 

balance calculations indicate that the ice stream and Filchner Ice Shelf system is not 

significantly thinning or thickening.  There is evidence to suggest that at least one of the 

individual ice streams (Bailey glacier) is 0.25±0.06 m per year.  Ice stream surfaces are 

generally convex and Slessor Glacier and Bailey Ice Stream driving stresses are large 

compared to the concave shaped West Antarctic Ice Streams.  The surface topography of 

Recovery Glacier varies the most from an equilibrium profile and stretches of the 

Recovery Glacier have low driving stress, suggestive of flow on a lubricated bed.  The 

convexity of the surface profiles, high driving stress, evidence of streaming flow and the 

shape of the glacier bed suggest that a change in ice stream dynamics could potentially 

result in an imbalanced discharge of large amounts of ice into the sea. 
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