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Abstract—The impact of measurement incidence angle (θ) on
the accuracy of radar-based surface soil-moisture (Θs) retrievals
is largely unknown due to discrepancies in theoretical backscatter
models as well as limitations in the availability of sufficiently
extensive ground-based Θs observations for validation. Here, we
apply a data-assimilation-based evaluation technique for remotely
sensed Θs retrievals that does not require ground-based soil-
moisture observations to examine the sensitivity of skill in surface
Θs retrievals to variations in θ. Past results with the evaluation
approach have shown that it is capable of detecting relative vari-
ations in the anomaly correlation coefficient between remotely
sensed Θs retrievals and ground-truth soil-moisture measure-
ments. Application of the evaluation approach to the Vienna Uni-
versity of Technology (TU Wien) European Remote Sensing (ERS)
scatterometer Θs data set over regional-scale (∼10002 km2) do-
mains in the Southern Great Plains and southeastern (SE) regions
of the U.S. indicate a relative reduction in correlation-based skill of
23% to 30% for Θs retrievals obtained from far-field (θ > 50◦)
ERS observations relative to Θs estimates obtained at θ < 26◦.
Such relatively modest sensitivity to θ is consistent with Θs

retrieval noise predictions made using the TU-Wien ERS Water
Retrieval Package 5 backscatter model. However, over moderate
vegetation cover in the SE domain, the coupling of a bare soil
backscatter model with a “vegetation water cloud” canopy model
is shown to overestimate the impact of θ on Θs retrieval skill.

Index Terms—Data assimilation, radar, remote sensing, soil
moisture.

I. INTRODUCTION

THE SENSITIVITY of radar backscatter signals to vegeta-
tion and surface properties is expected to vary significantly

as a function of radar incidence angle (θ). Consequently, the
impact of θ on surface soil-moisture (Θs) retrieval skill is a
key design consideration for satellite-based radars tasked with
the remote estimation of Θs. The work by Dobson and Ulaby
demonstrated that low incidence angles (10◦–20◦) are generally
preferred [8], [17], yet larger θ values are typically required in
order to achieve good spatiotemporal ground coverage. Side-
looking radars, such as the scatterometer on board European
Remote Sensing (ERS) satellites, cover the θ range between
20◦ and 60◦ (approximately), while the conical-scanning Soil
Moisture Active Passive mission will acquire backscatter mea-
surements at a fixed midrange incidence angle of 40◦ [13].
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Unfortunately, the impact of θ on retrieval skill is difficult
to quantify because of significant uncertainties in existing
backscatter (σ◦) models [2]. Even over bare soil surfaces, σ◦

models exhibit markedly different sensitivities to θ because of
difficulties describing the roughness of natural surfaces [20].
This uncertainty is compounded over vegetated surfaces where
variations in Θs uncertainty with θ depend on the assumed
strength of the so-called “canopy-interaction” and/or “double-
bounce” backscatter terms [21].

Theoretical models exist for capturing such terms [19]; how-
ever they cannot be properly inverted due to their complexity.
Therefore, simpler model functions trained by either theoret-
ical models and/or derived from empirical observations are
required for operational Θs retrieval. One possibility is the so-
called “vegetation water cloud” models which explicitly ignore
canopy-interaction terms [1]. In general, backscatter models
lacking such terms attribute changes in far-range backscatter
almost exclusively to vegetation [14] and predict little or no
sensitivity to Θs at large θ. Conversely, the Water Retrieval
Package 5 (WARP5) backscatter model developed by Vienna
University of Technology (TU Wien) for retrieving Θs from
ERS scatterometer and meteorological operational (METOP)
Advanced Scatterometer (ASCAT) observations implicitly as-
sumes the presence of a large interaction term [15] and pre-
dicts that the sensitivity term δσ◦(in decibels)/δΘs is constant
across all θ. Since the noise of radar measurements is given
in decibels [18], this assumption implies that the signal-to-
noise ratio of the Θs retrievals, and therefore their skill, do not
decrease with increasing θ even at far range (> 50◦) and in the
presence of dense vegetation.

Attempts to resolve this discrepancy over realistic landscapes
are typically hampered by a lack of sites where ground-based
Θs observations are sufficiently dense for direct comparisons
with coarse-scale (> 10 km) satellite retrievals. For example, a
validation study of several remotely sensed Θs products over
Western Africa using sparse ground-based Θs measurements
yielded very similar results for scatterometer soil-moisture
products retrieved with WARP5 and a second backscatter
model developed by [24], even though the two models treat
the vegetation component quite differently [11]. However, a
recently developed evaluation technique has provided a method
of evaluating large-scale soil-moisture products in the absence
of ground-based Θs observations [5]–[7]. Here, we apply this
technique in an attempt to clarify the impact of θ on radar-based
Θs retrieval skill.

II. BACKSCATTER MODELING

The water cloud model representation of vegetation is
based on decomposing total backscatter (in linear units) into
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components from transparent (tr) and nontransparent (nt) vege-
tation canopies within a single scatterometer footprint

σ◦ = (1 − Cnt)σ
◦

tr + Cntσ
◦

nt (1)

where Cnt represents the areal fraction of the footprint covered
by nontransparent canopy. Here, σ◦

nt is assumed to be

σ◦

nt =
ωnt cos θ

2
(2)

σ◦

tr =
ωtr cos θ

2

(
1 − e

−2τ
cos θ

)
+ σ◦

se
−2τ
cos θ (3)

where ω is the single scattering albedo of the vegetation canopy
(both transparent and nontransparent) and τtr is the optical
depth of the transparent canopy. The backscatter from the
bare soil surface (σ◦

s) in (3) is modeled using the integral
empirical model (IEM) [10] with an exponential model for
surface-roughness autocorrelation. The IEM predicts σ◦

s as a
function of surface-roughness s, surface reflectivity, and the
surface-roughness correlation length l. Surface reflectivity can
then be related to volumetric soil moisture (Θs) through the
Fresnel equations and the Dobson soil-moisture mixing model
[9] based on knowledge of soil sand (Sa) and clay (Cl)
fractions. Here, the imaginary part of the soil dielectric constant
is neglected, and the vegetation dielectric constant is assumed
to be one. We will refer to the combination of (1)–(3) with
the exponential IEM as the “IEM/Cloud” backscatter model for
vegetated surfaces

The ERS WARP5 backscatter model is similar in function-
ality to the cloud model, with the important exception that it
exhibits an increased sensitivity to Θs at far range by assuming
a linear relationship between Θs and σ◦ (now in decibel units)
across the entire θ range. At a reference angle of 40◦, backscat-
ter is given by

σ◦(40◦) = Θs(wetref − dryref) + dryref (4)

and can be related to backscatter at any θ through

σ◦(θ) = σ◦(40◦) + σ′(θ)(θ − 40◦) +
1

2
σ′′(θ)(θ − 40◦)2. (5)

The backscatter bounding parameters wetref and dryref in (4)
are calculated from extremely high and low backscatter values
within a sufficiently long time series of σ◦ observations at a
single point. In addition, wetref , dryref , σ′, and σ′′ all vary
seasonally due to patterns of vegetation growth and decay.
Full WARP5 details and exact parameterizations are given in
[15]. Note that, starting with (4), all references to σ◦ assume
decibel units and a vertically transmitting and receiving (VV)
backscatter polarization.

III. Rvalue METRIC

Directly inferring the impact of θ on Θs retrieval skill
requires the availability of large-scale Θs measurements de-
rived from ground-based sampling. Since such observations are
rarely available, we will explore the application of an alternative
strategy based solely on ground-based precipitation measure-
ments. The Rvalue metric for remotely sensed Θs retrievals is
based on sampling the Pearson’s correlation coefficient between
data assimilation analysis increments, realized upon the assim-
ilation of a remotely sensed Θs product into a water balance
model and known rainfall errors [5]–[7]. The typical model

implementation is using daily satellite-based precipitation accu-
mulation estimates (P sat) to derive the antecedent precipitation
index (API)

APIi = γiAPIi−1 + P sat
i (6)

where γ is the unitless API coefficient, i is a daily time index,
and P sat has units in millimeters. In the interest of simplicity,
γ is assumed equal to a constant value of 0.85. Past work also
used a slightly more complex parameterization where γ varies
seasonally [6], but verification results presented in [7] suggest
that assuming a constant γ is adequate. Higher quality daily
rainfall accumulations derived from the retrospective correction
of P sat using ground-based rain gauges (P gauge) must also be
available but are held in reserve for later evaluation.

Following [7], we decompose both precipitation products
and Θs derived from a remotely sensing source (ΘRS) into their
climatology and anomaly components

Θ̂RSi
= ΘRSi

− ΘRSDOY
(7)

P̂ sat
i = P sat

i − P
sat

DOY (8)

P̂ gauge
i = P gauge

i − P
gauge

DOY (9)

where ΘRSDOY
, P

sat

DOY, and P
gauge

DOY are climatological expecta-

tions for a given day of the year (DOY), and Θ̂RSi
, P̂ sat

i , and

P̂ gauge
i are anomalies relative to these expectations experienced

on day i. Climatological expectations are calculated by simple
linear averaging within a 31-day moving window centered on
the particular DOY corresponding to i and the entire (multiyear)
historical data set for each variable.

Since the API equation is linear, (1) can also be trivially
modified into its anomaly-based form

ÂPIi = γiÂPIi−1 + P̂ sat
i . (10)

Values of Θ̂RSi
are then assimilated into (10) using a

Rauch–Tung–Strebel smoother that has been optimized to
produce uncorrelated filtering innovations. Details of the as-
similation procedure are given in [7]. The end result of this
assimilation is a time series of daily analysis increments (δ)
which reflect modifications made to (10) by the smoother in

response to comparisons with Θ̂RSi
. Our approach is based

on summing these increments into a series of nonoverlapping
windows of length m

[δ]k =

j=mk+m∑

j=mk+1

δj (11)

where k indexes individual m-day windows. In parallel, a
comparable aggregation of rainfall errors is performed, i.e.,

[εrain]k =

j=mk+m∑

j=mk+1

(
P̂ gauge

i − P̂ sat
i

)
. (12)

Here, m will be set equal to 15 days, and only 15-day windows
in which at least two ΘRS retrievals are available will be in-
cluded into the eventual Rvalue calculation. This window size is
slightly larger than the five- to seven-day windows used in [5]–
[7] to account for the reduced frequency of ERS scatterometer
measurements at a given point relative to products obtained
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from scanning radiometers (i.e., the primary focus of past
work).

Given a sufficiently long time series of data, the Pearson’s
correlation coefficient (R) between [δ] and [εrain] can be
sampled for a particular geographic location. Following [5],
the negative of this sampled coefficient is referred to as the
Rvalue coefficient for a particular soil-moisture product. The
magnitude of Rvalue reflects the efficiency with which the
assimilation of ΘRS can compensate (6) for stochastic error in
P sat. Comparisons with extensive ground-based Θs observa-
tions at isolated test-bed sites reveal a strong linear relationship
between Rvalue and R between anomalies in ΘRS and ground-
based Θs observations [7]. Therefore, the Rvalue metric is a
robust proxy for relative variations in soil-moisture-retrieval
skill. While alternative Rvalue approaches could be designed
with more complex water balance models, a statistical analysis
of verification results in [7] implies that such models are
unlikely to improve its reliability as a skill metric. In practical
terms, the current Rvalue approach also has the added benefit of
not requiring the availability of ground-based Θs observations
or any other ancillary information and is thus broadly applicable
at continental and global scales. Our goal here is to use the
Rvalue approach to provide supporting evidence regarding the
appropriate relationship between soil-moisture-retrieval skill
and θ.

IV. METHODOLOGY

A. Soil-Moisture and Precipitation Data

The ERS scatterometer ΘRS data set is derived using the
WARP5 model presented by [15] and 5.3-GHz VV-polarization
σ◦ measurements obtained from the ERS-1 and -2 satellites
between August 1991 and May 2007. The WARP5 model is
now also used to operationally generate the European Meteoro-
logical Satellite Organization METOP ASCAT Θs product [4].
It includes several improvements to the earlier algorithm devel-
oped by [23] but leaves the general functionality of the algo-
rithm unchanged. One improvement is a module for correcting
azimuthal anisotropy as observed over some land surface types
[3]. WARP5 also includes a comprehensive error model to esti-
mate Θs retrieval noise for each grid point. This retrieval noise
varies in space and time primarily reflecting changes in sensi-
tivity due to different land cover and phenological states [15].

P gauge is obtained from the gauge-based National Center
for Environmental Prediction Climate Prediction Center (CPC)
retrospective contiguous United States rainfall product [12].
Following the convention used in CPC processing, daily rain-
fall accumulations are defined as total observed precipitation
between 12 and 12 coordinated universal time. Because daily
satellite-based rainfall products do not extend back for the
entire length of the ERS data set, P sat is generated through
the artificial degradation of P gauge. Here, this degradation is
performed via

P sat
i = αP gauge

i + β (13)

where the unitless random variable α is log-normally dis-
tributed with mean one and standard deviation σα, and β is
normally distributed with mean zero and standard deviation σβ .
To roughly match previous Rvalue results in the southern U.S.
derived from actual satellite-based precipitation measurements

[6], σα and σβ are set to values of 3 (unitless) and 10 mm,
respectively.

Our analysis is based on 1◦ simulations run within two
separate regions of the U.S.: a Southern Great Plains (SGP)
regional domain between 32.5◦ N and 40.5◦ N, and 94.5◦ W and
103.5◦ W, and a southeastern (SE) regional domain covering
30.5◦ N–38.5◦ N and 79.5◦ W–88.5◦ W. Landcover in the SGP
domain is generally short grassland and rangeland with low
levels of vegetation biomass. In contrast, the SE domain is
more heavily vegetated with a combination of upload forested
areas and valley-based cropland. Prior to the analysis, all data
is processed onto a daily 1◦ latitude/longitude grid, and the
subsequent Rvalue analysis is applied separately to each 1◦ box.

B. Rvalue Approach

In order to examine the relative variation of Rvalue with θ,
all ERS soil-moisture retrievals are divided into five separate θ
bins:< 26◦, 26◦−35◦, 35◦−43◦, 43◦−50◦, and > 50◦.These par-
ticular bins are selected so that each contains an approximately
equal fraction of all ERS WARP5 retrievals. Here, θ is assumed
to be the average of the fore-beam, aft-beam, and midbeam
incidence angles for ERS measurements within a single 1◦ grid
box on a given day. The Rvalue is then individually estimated
for ERS WARP5 Θs retrievals falling within each θ range.
Hereinafter, these results will be referred to as the “real ERS”
data case. Relative variations in Rvalue for this case reveal the
manner in which θ changes impact Θs retrieval skill.

A secondary goal is comparing real ERS results with syn-
thetic cases in which the variation of Rvalue with θ is predicted
from a radar backscatter model. To this end, a synthetic baseline
truth ΘRS time series is generated by driving (1) with P gauge.
These “truth” soil-moisture values (API∗) are then artificially
perturbed following

ΘRSi
= API∗i + λ · εΘs

· ηi (14)

where εΘs
is the standard error in volumetric Θs retrievals and

η is a normalized Gaussian random variable with no temporal
or spatial autocorrelation. The constant scaling factor λ [in
millimeters] is required to translate between volumetric and
water-depth units and is used as a tuning parameter. Note that
an additional scaling factor could be used to convert the entire
right-hand side of (14) back into volumetric soil-moisture units;
however, it is unnecessary since Rvalue results are insensitive to
any linear transformation of ΘRS [5].

Here, εΘs
is estimated from

ε2
Θs

≈

n∑

j=1

(
δΘs

δxj

)2

ε2
xj

(15)

where the length-n vector x consists of various parameter
inputs into the backscatter model. For the WARP5 model,
values of εΘs

are already provided by [15]. For the IEM/Cloud
model, x is defined as

x = [σ◦, τtr, ωtr, ωnt, Cnt, l, s, Sa, Cl]. (16)

Values for δΘs/δxj are then derived from tangent linear cal-
culations of (1)–(3). Parameter values for the application of
the IEM/Cloud model to both domains are given in Table I.
The 1σ magnitude of input errors (εxj

) are based on assuming
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TABLE I
IEM/CLOUD MODEL PARAMETERS FOR THE SGP AND SE U.S. DOMAINS

a 20% relative uncertainty in τtr and ωtr and 10% relative
uncertainty in s and l. Biases in time-constant parameters (i.e.,
Sa, Cl, and Cnt) are neglected since Rvalue captures skill with
regard to relative change detection only. In addition, εσ◦ is set
equal to 0.50 dB. The values of θ required for the calculation
of δΘs/δxj are taken from the actual time-series of ERS
overpasses within each domain, and the soil-moisture values
required to calculate δΘs/δxj are derived from API∗/15 mm
to reflect an expected 30-mm measurement depth and 50% soil
porosity.

The time series of synthetic ΘRS calculated from (14) are
then substituted into (7)–(12) and are used to calculate Rvalue

for the θ ranges described earlier. Since noise in synthetically
generated ΘRS is based solely on sensitivities present in each
backscatter model, the calculated Rvalue reflects the predicted
variation (for each backscatter model) of retrieval skill with θ.
Because our goal is to examine only the relative variation of
Rvalue with θ, a single-domain-scale value of λ in (14) is tuned
so that the Rvalue results for the central θ range of 35◦–43◦

match those sampled for the real ERS case. The error bars for
the sampled Rvalue estimates are based on the application of
Fisher’s z-transformation to ensure normality (see [16, p. 148])
and an assumption of spatial and temporal independence in

δi and εrain
i values. The likelihood of such independence is

maximized by the large spatial and temporal scales of the
analysis (1◦ latitude/longitude and 15 days).

V. RESULTS

Fig. 1 shows the variation of Rvalue with θ for the real ERS
data case. The Rvalue results are presented as spatial averages
of all 1◦ Rvalue results calculated within each domain. For the
SGP domain, the calculated Rvalue declines slightly with θ.
Since the Rvalue metric has a strong linear relationship with the
Pearson’s correlation coefficient between retrieved and ground-

observed Θs anomalies [7], the ratio R̂value = Rvalue(> 50◦)/
Rvalue(< 26◦) approximates the corresponding ratio in
correlation-based skill. Based on this reasoning, the highest
θ range in Fig. 1 (for the SGP domain) retains 77% of the
correlation-based anomaly skill found in the lowest θ range

(i.e., R̂value = 0.77). Reflecting the impact of increased veg-
etation biomass and thus, lower retrieval skill, relatively lower
Rvalue results are noted over the SE domain. In addition, slight-

ly more sensitivity to θ is found as the R̂value ratio falls to 0.70.
In order to compare the results in Fig. 1 with uncertainty

predictions based on existing backscatter models, Fig. 2 shows
the plot of Rvalue results for the real ERS data case alongside
synthetic results based on noise calculations derived from the
ERS WARP5 and IEM/Cloud backscatter models. As described
earlier, these synthetic cases are generated by adding noise val-
ues (derived from [15] for WARP5 and (15) for the IEM/Cloud
model) to API∗ via (14). For each synthetic case, a domain-
constant value of λ in (14) is tuned to ensure that Rvalue results
match the real ERS data case for the 35◦–43◦ θ range. Within

Fig. 1. Observed variation of domain-averaged Rvalue with θ for the real
ERS data case over the lightly vegetated SGP and the moderately vegetated
SE U.S. domains. Error bars represent the 2σ sampling uncertainty range of
domain-averaged Rvalue.

Fig. 2. Variation of domain-averaged Rvalue with θ for the real ERS, syn-
thetic + WARP5.0 noise, and synthetic + IEM/Cloud noise cases within the
(a) lightly vegetated SGP and (b) moderately vegetated SE domains. Error bars
represent the 2σ sampling uncertainty range of domain-averaged Rvalue.

the lightly vegetated SGP domain [Fig. 2(a)], the relationship
between retrieval skill and θ predicted by the ERS WARP5
model (blue line) presents a good fit to real ERS results (black

line). In particular, the WARP5 model predicts R̂value = 0.74,

which nearly matches the real ERS result of R̂value = 0.77.

However, the predicted R̂value for the IEM/Cloud case (red line)
falls to 0.63—indicating a slight overestimation of the actual
impact of θ on retrieval skill by the IEM/Cloud model.

The performance of both backscatter models degrades over
the more densely vegetated SE domain [Fig. 2(b)]. The ERS
WARP5 model predicts essentially no variation with θ (blue
line) and fails to capture the modest decline in Rvalue at high
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θ observed in the real ERS case (black line). Conversely, the
IEM/Cloud model (red line) sharply overpredicts the impact of

θ on retrieval skill—leading to a predicted R̂value that signif-
icantly underestimates the real ERS case (0.31 versus 0.70).
Consequently, as parameterized in Table I, the IEM/Cloud
model substantially underestimates the skill of Θs retrievals
based on far-field ERS observations.

Several sensitivities should be noted when interpreting
Figs. 1 and 2. One arbitrary aspect of the analysis is the selec-
tion of α and β in (13) to generate P sat. However, sensitivity
analyses (not shown) demonstrate that the presented results are
generally robust to variations in these parameters. In contrast,
care should be taken in interpreting the IEM/Cloud model
synthetic results since the Rvalue predictions exhibit sensitivity
to retrieval parameter values listed in Table I. Alternative para-
meterizations exist (e.g., lower τ or higher s) that could reduce
the impact of θ variations on IEM/Cloud Rvalue predictions.

VI. CONCLUSION

The impact of θ on Θs retrieval skill represents an area of
significant uncertainty for efforts to apply spaceborne radars to
operationally estimate Θs over continental-scale regions. Here,
we have attempted to clarify this issue by applying a new data-
assimilation-based evaluation method for remotely sensed Θs

products. Our results support three specific conclusions.

1) Despite a slight reduction in skill with increasing θ,
statistically significant skill is detectable at all θ ranges
within the TU-Wien WARP5 surface Θs data product.
Specifically, θ retrievals based on far-field (θ > 50◦) ERS
observations in the SGP (SE) domain retain 77% (70%)
of the correlation-based skill present in retrievals at the
lowest available ERS θ range (θ < 26◦).

2) Over the lightly vegetated SGP domain, this lack of sharp
variation in retrieval skill with increasing θ is roughly
consistent with uncertainty predictions obtained from
the ERS WARP5 backscatter model. However, over the
SE domain, noise predictions from the WARP5 model
slightly underpredict the observed impact of θ on retrieval
skill.

3) The coupling of the IEM bare soil backscatter model
with a vegetation cloud model generally overestimates
the impact of θ on Θs retrieval skill—particularly over
the moderately vegetated SE domain. One possible cause
for this is the lack of a canopy interaction term in (3)
which causes the IEM/Cloud model to underestimate the
skill in far-field Θs retrievals over vegetated landscapes.
However, it is also possible that alternative parameteriza-
tions of the IEM/Cloud model (e.g., variations in s, l, or
τ ) may produce more accurate results without requiring
the presence of a canopy interaction term in (3). Clearly
differentiating between these two possible causes will
likely require the examination of finer scale sites where
the IEM/Cloud model parameters can be independently
obtained.
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