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Abstract—A recently developed data assimilation technique
offers the potential to greatly expand the geographic domain
over which remotely sensed surface soil moisture retrievals can
be evaluated by effectively substituting (relatively plentiful) rain-
gauge observations for (less commonly available) ground-based
soil moisture measurements. The technique is based on calculat-
ing the Pearson correlation coefficient (Rvalue) between rainfall
errors and Kalman filter analysis increments realized during the
assimilation of a remotely sensed soil moisture product into the
antecedent precipitation index (API). Here, the existing Rvalue

approach is modified by reformulating it to run on an anomaly ba-
sis where long-term seasonal trends are explicitly removed and by
calculating API analysis increments using a Rauch–Tung–Striebel
smoother instead of a Kalman filter. This reformulated approach
is then applied to a number of Advanced Microwave Scanning
Radiometer soil moisture products acquired within three heavily
instrumented watershed sites in the southern U.S. Rvalue-based
evaluations of soil moisture products within these sites are verified
based on comparisons with available ground-based soil mois-
ture measurements. Results demonstrate that, without access to
ground-based soil moisture measurements, the Rvalue method-
ology can accurately mimic anomaly correlation coefficients cal-
culated between remotely sensed soil moisture products and soil
moisture observations obtained from dense ground-based net-
works. Sensitivity results also indicate that the predictive skill of
the Rvalue metric is enhanced by both proposed modifications to
its methodology. Finally, Rvalue calculations are expanded to a
quasi-global (50◦ S–50◦ N) domain using rainfall measurements
derived from the Tropical Rainfall Measurement Mission Precip-
itation Analysis. Spatial patterns in calculated Rvalue fields are
compared to regions of strong land–atmosphere coupling and used
to refine expectations concerning the global distribution of land
areas in which remotely sensed surface soil moisture retrievals will
contribute to atmospheric forecasting applications.

Index Terms—Data assimilation, land surface modeling and
ground validation, microwave radiometer, soil moisture.

I. INTRODUCTION

A WIDE range of remote sensing retrieval strategies have

been applied to routinely estimate surface soil mois-

ture magnitudes from satellite-based instrumentation (see, e.g.,

[2], [23], [26], [35], and [37]). Most approaches provide

soil moisture estimates at a relatively coarse spatial scale
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(> 10−30 km), and practical difficulties associated with the

validation of such coarse-resolution products using ground-

based instruments have limited the amount of performance

feedback information available to soil moisture algorithm de-

velopers concerning the accuracy (and ultimate value) of their

products [5], [7], [32]. Relative to ground-based soil moisture

probes, ground-based rainfall gauges are inexpensive, easy to

maintain, and more readily scalable and have already been

widely installed over vast continental regions. For instance,

within the contiguous U.S. (CONUS), the number of available

rain gauges (∼15 000) [16] is several orders of magnitude

greater than the number of operational network stations cur-

rently measuring soil moisture (∼200) [19]. Given the obvious

connection between rainfall and subsequent soil moisture, it

should be possible to leverage relatively abundant rain-gauge

observations to indirectly evaluate the accuracy of remotely

sensed surface soil moisture retrievals.

Recent work has made substantial progress in this direction.

In particular, Crow et al. [7], [8] and Loew et al. [22] develop

and/or apply an evaluation approach for surface soil moisture

retrievals that effectively substitutes rain-gauge measurements

for ground-based soil moisture observations. This approach is

based on evaluating the correlation coefficient (Rvalue) between

antecedent rainfall errors and analysis increments realized dur-

ing the Kalman-filter-based assimilation of remotely sensed

soil moisture products into a water-balance model. Because it

does not require ground-based soil moisture measurements, it

enables the spatial expansion of potential soil moisture val-

idation locations from localized sites containing sufficiently

dense ground-based soil moisture networks (see, e.g., [4], [19],

[30], [31], and [36]) to much larger continental-scale regions

containing adequate rain-gauge coverage.

Despite this progress, the baseline Rvalue approach (and pre-

vious applications of it) have been limited in several important

regards. For example, Rvalue calculations have been based on a

Kalman filtering methodology to assimilate raw remote sensing

retrievals. The reanalysis (i.e., non-real-time) nature of the

Rvalue calculation makes the use of a filtering framework poten-

tially suboptimal. Generally, better data assimilation (DA) re-

sults can be obtained by implementing smoothing techniques in

which model state predictions are updated by both past and fu-

ture observations [10]. In addition, the assimilation of remotely

sensed retrievals possessing a unique seasonal climatology

(relative to, for example, the climatology of the assimilation

model) can potentially confound the interpretation of Rvalue.

This analysis will address these shortcomings by modifying

the Rvalue methodology. First, the Rvalue methodology will

be altered to operate on an anomaly basis where climatolog-

ical expectations in soil moisture and precipitation have been
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explicitly removed. This transformation allows Rvalues to solely

reflect the ability of a soil moisture product to capture actual soil

moisture anomalies (relative to a given climatology) and not

simply mimic seasonal soil moisture cycles. This distinction is

critical for key land DA applications, like the initialization of

atmospheric prediction models, where the added value of soil

moisture remote sensing observations is based on their ability

to capture anomalies relative to climatological expectations [9].

Second, because it is essentially a reanalysis-type exercise

performed on retrospective data sets, the Rvalue methodology

has been modified to be based on a Rauch–Tung–Striebel (RTS)

smoother [27]. The RTS smoother provides a more appropriate

estimation methodology for reanalysis-based increments than

previous applications of the Kalman filter [10], [11]. These

methodological changes enhance the utilization of information

embedded in remotely sensed soil moisture products. Conse-

quently, their implementation within the Rvalue methodology

should provide a more robust evaluation of remotely sensed soil

moisture products.

In addition to these methodological modifications, this analy-

sis will also expand the manner in which the Rvalue metric has

been applied and verified. To date, Rvalue results have not been

verified through comparison with independent observations nor

have they been calculated outside of relatively data-rich areas

like CONUS. Crow [7] argues that Rvalue provides a robust

proxy for the correlation of remotely sensed soil moisture

products with true soil moisture. However, support for this

assertion has been limited to results from synthetic DA experi-

ments in which a number of potential confounding factors (e.g.,

seasonality, missing data, and/or autocorrelation in retrieval

error) are neglected. In order to provide a more credible evalua-

tion, Rvalue-based inferences regarding the accuracy of existing

remotely sensed soil moisture products will be compared to

analogous inferences obtained from dense ground-based sam-

pling of soil moisture. Finally, using only precipitation data

sets from the Tropical Rainfall Measurement Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA), an enhanced (and

newly verified) Rvalue algorithm will be applied quasi-globally

(50◦ S–50◦ N) for the first time using remotely sensed soil

moisture data sets from the Advanced Microwave Scanning

Radiometer—Earth Observing System (AMSR-E) instrument.

Based on these goals, this paper is organized as follows.

Section II reviews the baseline Rvalue methodology and de-

scribes the modifications introduced above. Following a de-

scription of watershed study sites in Section III and remote

sensing products in Sections IV and V, Section VI presents

verification results whereby inferences obtained from the ap-

plication of the Rvalue approach are compared to results

obtained from dense ground-based soil moisture networks.

Sections VII and VIII present a quasi-global scale compari-

son of Rvalue results for various AMSR-E soil moisture data

products—particularly within land areas identified as regions of

strong land-surface/atmosphere coupling by Koster et al. [21].

II. Rvalue ALGORITHM

All approaches presented here are based on using daily

satellite-based precipitation accumulation estimates (P sat) to

derive the antecedent precipitation index (API)

APIi = γiAPIi−1 + P sat
i

(1)

where γ is the unitless API coefficient and i is a daily time

index. Unless otherwise specified, γ is assumed equal to a

globally constant value of 0.85. Higher quality daily rainfall

accumulations derived from the retrospective correction of P sat

using ground-based rain gauges (P gauge) must also be available

but are reserved for benchmarking purposes. Values of API and

P will be given in units of millimeter water depth.

A. Baseline Approach

The baseline Rvalue approach in [8] is based on the as-

similation of remotely sensed soil moisture retrievals (θRS in

volumetric soil moisture units of m3
· m−3) into (1) using a

Kalman filter

API+
KFi

= API−KFi
+ Ki

[
θRSi

− H
(
API−KFi

)]
(2)

where i is a daily time index and “−” and “+” denote API

values before and after Kalman filter updating, respectively.

The observation operator H is a simple time-constant linear

function

H
(
API−KFi

)
= a + bAPI−KFi

(3)

whose intercept parameter a (m3
· m−3) and slope parameter

b (m3
· m−3

· mm−1) are obtained through a least squares re-

gression of API, calculated via (1) using P gauge and no Kalman

filter updating, against θRS. Such regression implicitly assumes

that the effective depth of API predictions (determined by the

assumed magnitude of γ) and θRS are approximately equal.

Because fitted values of a and b vary according to land cover

conditions, this regression must be calculated separately for

each geographic domain over which the Rvalue approach is

applied (see Section V for more details).

The Kalman gain K (m−3
· m3

· mm) in (2) is then given by

Ki = b T−

KFi

/ (
b2 T−

KFi
+ S

)
(4)

where T−

KFi
(mm2) is the background error variance in APIKF

forecasts and S (m6
· m−6) is the error variance in θRS re-

trievals. At measurement times, T−

KF is updated following

T+
KFi

= (1 − bKi)T
−

KFi
. (5)

Between measurements and the updating of API and T via

(2) and (5), API is forecasted in time using P sat and (1). The

updated model forecast error T+
KF is also forecasted as

T−

KFi
= γi

2 T+
KFi−1

+ Q (6)

where Q (mm2) relates the variance added to an API forecast

as it is propagated from time i − 1 to i. Values of Q and S are

calibrated through the statistical analysis of filter innovations

νKFi
=

[
θRSi

− H
(
API−KFi

)] / (
b2 T−

KFi
+ S

)0.5
. (7)

A properly constructed linear filter should yield a νKF time

series that is serially uncorrelated [14]. Here, a simple tangent-

linear optimization algorithm is used to iteratively vary the Q/S
ratio until this constraint is satisfied.
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Updates to API given by (2) in the course of assimilating a

particular remotely sensed soil moisture product are referred to

as “analysis increments”

δKFi
=API+

KFi
− API−KFi

=Ki

[
θRSi

− H
(
API−KFi

)]
. (8)

If θRS has appreciable skill in detecting soil moisture tem-

poral variations, values of δKF will correlate with near-past

errors in precipitation anomalies (P sat
− P gauge). Following

[7], both δKF and P sat
− P gauge are summed within a series of

nonoverlapping windows of length N day(s), and a correlation

coefficient is calculated between the N -day sums of δKF and

P sat
− P gauge. The negative of this correlation coefficient is

referred to as the Rvalue metric for a particular θRS product.

Higher Rvalue indicates increased efficiency in the filtering of

error in API predictions arising from random noise in P sat

estimates. In this way, the Rvalue metric measures the degree

to which the assimilation of θRS adds value to model-based

estimates of surface soil moisture—above and beyond the base-

line case of simply driving (1) with P sat. One consequence of

this interpretation is that Rvalue should have a direct one-to-

one relationship with the correlation coefficient between θRS

and true soil moisture [7]. Using the simple modeling approach

in (1), we will attempt to verify this relationship and clarify

accuracy requirements for P gauge measurements forming the

basis of the Rvalue evaluation approach.

B. Anomaly Modification

Crow et al. [7], [8] use the baseline approach described

earlier to generate 1◦ latitude/longitude Rvalue maps, and they

argue that these maps constitute a robust proxy for Pearson’s

correlation coefficient between θRS and true soil moisture

(as acquired, e.g., from a dense ground-based soil moisture

network). Such correlations are sensitive to both the skill of

retrievals with regard to short-term soil moisture anomalies and

their ability to capture typical soil moisture seasonal cycling.

One consequence of this dual sensitivity is that a given soil

moisture product can exhibit a relatively high correlation co-

efficient (and, thus, high Rvalue) based solely on accurately

mimicking climatological seasonal variations in soil moisture

while possessing little or no skill in capturing shorter-term

anomalies. Most soil moisture DA systems are based on scaling

the observed soil moisture into a model’s unique soil moisture

climatology—ideally on a seasonal or monthly basis (see,

e.g., [12])—prior to its assimilation. As a result, accurately

capturing soil moisture seasonal cycles in a remotely sensed

product is of relatively little value. For many DA applications,

a more important reflection of product value is skill with regard

to detecting soil moisture anomalies relative to an expected

annual cycle [9].

To this end, we propose decomposing raw precipitation and

soil moisture time series into their climatology and anomaly

components

θ̂RSi
= θRSi

− θRSDOY
(9)

P̂ sat
i

= P sat
i

− P
sat

DOY (10)

P̂ gauge
i

= P gauge
i

− P
gauge

DOY (11)

where θRSDOY
, P

sat

DOY, and P
gauge

DOY are climatological expec-

tations for a given day of the year (DOY) and θ̂RSi
, P̂ sat

i
, and

P̂ gauge
i

are anomalies relative to these expectations experienced

on a particular day i. Expectations are calculated by simple

linear averaging within a 31-day moving window centered on

the particular DOY corresponding to i and the entire (multiyear)

historical data set for each variable.

Because the baseline Rvalue analysis in Section II-A is fully

linear, raw values of θRS and P sat appearing in (1)–(8) can be

substituted with their anomaly equivalents without any loss of

validity. In particular, (1) can be modified to produce anomaly

API forecasts

ÂPIi = γiÂPIi−1 + P̂ sat
i

(12)

which are then updated using θ̂RS to produce anomaly analysis

increments

δ̂KFi
= K̂i

[
θ̂RSi

− H
(
ÂPI

−

KFi

)]
(13)

where K̂ is based on substituting anomaly-based values of T

and S (T̂ and Ŝ) into (4). Analysis increments obtained from

(13) and the rainfall anomaly difference P̂ sat
− P̂ gauge are both

summed within nonoverlapping N -day windows, and Rvalue

is estimated from the negative of their Pearson’s correlation

coefficient. The process mimics the baseline version perfectly,

except that Rvalue results now reflect skill in θRS with respect

to only soil moisture anomaly detection.

C. RTS Smoother Modification

The RTS smoother is based on adding a second backward-

propagating update to the Kalman filter analysis that incor-

porates information contained in observations made after the

time of update. Because a filter-based update is limited to

consider only prior observations, this backward propagation

allows for the more efficient use of information embedded

in soil moisture retrievals. Furthermore, because our Rvalue

methodology is essentially a reanalysis-type analysis, there are

no practical barriers (e.g., the need for real-time results) to the

implementation of a smoothing approach.

After the complete calculation and calibration of Kalman-

filter-based increments (now based on climatological anomalies

following Section II-B), the RTS smoother propagates informa-

tion backward in time starting with the final conditions of

ÂPIRTS = ÂPI
+

KF (14)

T̂RTS = T̂+
KF. (15)

The time-backward propagation of these variables is given by

ÂPIRTSi
= ÂPI

+

KFi
+Ai

(
ÂPIRTSi+1

−ÂPI
−

KFi+1

)
(16)

T̂RTSi
= T̂+

KFi
+ A2

i

(
TRTSi+1

− T̂−

KFi+1

)
(17)

where

Ai = γ T̂+
KFi

/T̂−

KFi+1
. (18)
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Upon propagation of this second smoothing step, the total

analysis increment becomes

δ̂RTSi
= δ̂KFi

+ Ai

(
ÂPIRTSi+1

− ÂPI
−

KFi+1

)
(19)

where δ̂KF is given by (13). Rvalue is then the negative of

Pearson’s correlation coefficient between N -day sums of δ̂RTS

and P̂ sat
− P̂ gauge.

III. WATERSHED SITES

The Rvalue approach described in Section II will be evalu-

ated based on soil moisture and rainfall observations available

within three separate U.S. Department of Agriculture (USDA)

Agricultural Research Service (ARS) experimental watersheds.

Each watershed contains a dense ground-based soil moisture

network constructed to facilitate its participation in AMSR-E

soil moisture validation activities [19]. As a result, these three

watersheds provide an opportunity to assess the performance

of the Rvalue metric over a range of land surface and climate

conditions.

A. LR, GA

The 334-km2 Little River (LR) Experimental Watershed is

located in southern Georgia. The USDA-ARS Southeast Wa-

tershed Research Laboratory at Tifton, GA, has been collecting

hydrologic and climatic data in the watershed since 1968. Land

use is a mixture of pasture and forage production, row-crop

agriculture (primarily summertime cotton and peanuts), and

upland and riparian forests. The watershed topography is char-

acterized by rolling hills and gentle slopes. Climate is humid,

with a mean annual precipitation of around 1200 mm—the ma-

jority of which occurs during short-duration but high-intensity

convective thunderstorms. Rainfall and soil moisture ground

data sets are based on measurements made at 29 separate

stations within the watershed. For more details on the watershed

and its observational networks, see [3], [4], and [19].

B. LW, OK

The 611-km2 Little Washita (LW) Watershed is located in

southwestern Oklahoma. The watershed has served as the site

for a large number of soil erosion studies since 1936 and

hydrological experiments since 1961. Land use is dominated

by rangeland and pastures, with significant areas of winter

wheat cultivation within the western half of the watershed.

The topography is generally flat, with a maximum relief of

less than 200 m. Climate is subhumid, with a mean annual

precipitation of 760 mm and a mean annual temperature of

16 ◦C. The watershed experiences strong seasonal variations,

with hot and dry summers separated from cold and dry winters

by relatively wet periods in the spring and fall. The ground data

used here were acquired at 42 rain gauges and 20 soil moisture

stations within the study area. Measurements are made as part

of the ARS Micronet operated and maintained by the USDA-

ARS Grazinglands Research Laboratory in cooperation with

Oklahoma State University and the Oklahoma Climatological

Survey. For more details on the LW Watershed and these

observations, see [1], [5], [19], and http://ars.mesonet.org.

C. WG, AZ

The 150-km2 Walnut Gulch (WG) Experimental Watershed

is located in southeastern Arizona. The USDA-ARS Southwest

Watershed Research Center in Tucson, AZ, has been collecting

rainfall data at the site since 1956 and soil moisture since

1996. Land cover is generally brush and short-grass rangeland.

Elevation within the watershed ranges from 1250 to 1585 m

above sea level. Located in a semiarid climate zone, the pre-

cipitation regime is dominated by the North American mon-

soon system, with about 60% of the annual rainfall associated

with summer convective storms. The mean annual rainfall is

350 mm, and the mean annual temperature is 18 ◦C. Precipita-

tion data are collected at 82 stations, while the soil moisture is

recorded at 19 separate locations. For more details on the WG

Experimental Watershed and these observations, see [6], [15],

[19], and [29].

IV. REMOTE SENSING DATA

Remotely sensed soil moisture retrievals are based on

five separate products derived from a range of passive mi-

crowave brightness temperature (TB) observations made by the

AMSR-E sensor aboard the National Aeronautics and Space

Administration (NASA) Aqua satellite. The AMSRENASA

product is the official NASA AMSR-E Level 3 soil moisture

product [25] derived from application of the dual polarization

algorithm described in [23] to H- and V-polarized AMSR-E

X-band (10.6-GHz) TB observations. The AMSREUSDA prod-

uct (developed at the USDA Hydrology and Remote Sensing

Laboratory by T. J. Jackson and R. Bindlish) is based on X-band

TB observations as well but uses the single-channel (H-

polarization only) algorithm of Jackson [18]. The AMSREVU

product (developed at the Vrije University of Amsterdam (VU)

by R.A.M. de Jeu and T. Holmes in collaboration with M. Owe

at the NASA Goddard Space Flight Center) applies the algo-

rithm of Owe et al. [26] to dual-polarized C-band (6.9-GHz)

TB and falls back to X-band TB in areas of significant C-band

radio-frequency interference (RFI) over the U.S. and Japan

[24]. A fourth product (AMSRESWI) is based on the appli-

cation of the soil wetness index (SWI) approach [33] to the

AMSR-E TB measurements. Here, SWI is simply the dif-

ference of AMSR-E H-polarized TB observations at 89 and

18.7 GHz. A final soil moisture product (AMSRECOMB)
is obtained from arithmetic averaging of the AMSREUSDA,

AMSREVU, and AMSRENASA products. To ensure equal

weighting, the AMSREUSDA, AMSREVU, and AMSRENASA

soil moisture products are linearly normalized to the same mean

and standard deviation prior to this averaging. For all five prod-

ucts (AMSRESWI, AMSRENASA, AMSREUSDA, AMSREVU,

and AMSRECOMB), soil moisture retrievals obtained from

ascending (1:30 P.M.) and descending (1:30 A.M.) AMSR-E

overpasses are analyzed separately.

Two separate satellite-based rainfall data sets produced by

TMPA [17] are also utilized. Unless otherwise stated, P sat

is based on the real-time TRMM 3B40RT product calculated
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Fig. 1. Location and boundaries for the WG (AZ), LW (OK), and LR (GA)
USDA-ARS experimental watersheds. The shaded square is the quarter-degree
grid cell used to approximate each watershed.

using a combination of microwave-only satellite data derived

from a number of sensors [17]. In contrast, the TRMM 3B42

product is computed by combining these passive microwave

estimates with microwave-calibrated infrared (IR) estimates

and a retrospective correction based on monthly rain-gauge

data [17]. Our use of the TRMM 3B42 product will vary with

context. For the watershed verification analysis in Section VI,

it, along with TRMM 3B40RT, will be used for P sat. For the

quasi-global analysis in Sections VII and VIII, it will be used

exclusively for the benchmark P gauge rainfall product.

V. APPROACH

The study period for the entire analysis is from February 2,

2002, to December 31, 2007. However, because AMSR-E

observations did not become available until June 2002, the first

four months of this period are reserved for spinning up the API

model. All API modeling is based on a daily time step. Unless

otherwise noted, a window length of N = 5 days is used, and

a minimum threshold of two observations per window is en-

forced. Time windows failing this threshold are removed from

the analysis and not used to calculate Rvalue. Daily TRMM

3B40RT and 3B42 rainfall accumulation estimates are extracted

from the quarter-degree latitude/longitude grid box that most

closely approximates the spatial extent of each watershed (see

Fig. 1). Likewise, retrievals for the five remotely sensed soil

moisture products (AMSRENASA, AMSREUSDA, AMSREVU,

AMSRESWI, and AMSRECOMB) are extracted from gridded

quarter-degree data products for each of the soil moisture data

sets. Relative to the LR and LW watersheds, the best quarter-

degree grid fit for the WG watershed is still a poor spatial

approximation of the actual watershed (Fig. 1). Therefore, for

the WG site, a sensitivity analysis was performed to determine

the impact of extracting WG AMSREUSDA and AMSRENASA

retrievals from individual swath-based footprints instead of a

pregridded quarter-degree analysis. Because results from this

test indicate little or no impact on subsequent Rvalue results and

some AMSR-E soil moisture products are not readily available

in swath format, extraction from quarter-degree gridded data

products is retained for our multi-product analysis at the WG

site. In addition, to allow for direct comparisons between differ-

ent soil moisture products, a particular quarter-degree grid (for

a given overpass) is included in the analysis only if it contains a

viable soil moisture retrieval for all five soil moisture products.

As noted previously, retrievals from ascending and descending

AMSR-E overpasses are considered separately.

For watershed verification results (Section VI), the API

modeling day is defined as the 24-h period starting at mid-

night Central Standard Time (CST). As noted in Section III,

each watershed contains its own dense rain-gauge network.

Simple arithmetic averaging is applied to spatially aggregate

daily rainfall accumulation values from individual rain gauges

within each watershed into a mean daily accumulation for the

watershed. These spatially averaged values are then used for

Pgauge. Based on [19], weighted averages developed through

Thiessen polygons are employed to upscale ground-based soil

moisture measurements from individual stations to the entire

watershed. In order to match AMSR-E overpass times, only

ground-based soil moisture observations taken at 1:30 P.M. or

1:30 A.M. local solar time are considered. Due to a disruption

in the availability of ground-based soil moisture during late

2007, the watershed analysis in Section VI ended on July 25,

August 26, and September 23, 2007, for the WG, LW, and LR

watersheds, respectively. Values of a and b in (3) are equal

to slope and intercept parameters derived from least squares

linear regression of an API time series, derived using P gauge

in (1) and no Kalman filtering updating, to AMSR-E surface

soil moisture products. This fitting is based on data from the

entire analysis period (2002 and 2007), and separate parameters

are obtained for each AMSR-E soil moisture product at every

watershed site.

The quasi-global (50◦ S–50◦ N) results in Section VII are

based on a different temporal and spatial gridding. Prior to any

subsequent processing, precipitation and soil moisture remote

sensing products are aggregated onto a 1◦ latitude/longitude

spatial grid. Daily precipitation depths P sat and P gauge are

based on the total rainfall accumulation observed between 12

and 12 UTC, and the soil moisture values for the same day

are taken from any ascending or descending AMSR-E retrieval

acquired during a period shifted 12 hours into the future

(0–24 UTC). This shift is done to maximize the probability

that the soil moisture retrieval will occur after a particular

rainfall event—as is implicitly assumed in the Rvalue approach

(see Section II). At the global scale, P sat and P gauge are

always derived from TRMM 3B40RT and TRMM 3B42 results,

respectively. Note this difference relative to the watershed ap-

proach described before, where both TRMM 3B42 and 3B40RT

are used for P sat, and P gauge is derived from local rain-gauge

networks. For the global-scale analysis, parameters a and b in

(3) are derived as in the watershed case described earlier except

based on linear least squares fitting applied separately to each

1◦ grid box.
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Fig. 2. Based on the anomaly and RTS smoother modifications described in
Section II, the relationship between Rtruth and Rvalue for all AMSR-E soil
moisture products (see Section IV) within the three watershed sites (WG is blue,
LR is red, and LW is green). Results illustrate the use of both (open symbols)
TRMM 3B42 and (filled symbols) 3B40RT precipitation products as P

sat.

VI. WATERSHED VERIFICATION RESULTS

For the three watersheds described in Section III, Fig. 2

shows Rvalue watershed results with Pearson’s correlation co-

efficients between daily AMSR-E soil moisture products and

daily watershed-scale soil moisture estimates obtained from

the spatial averaging of high-density soil moisture ground net-

works. These ground-based correlations, referred to as Rtruth,

reflect the type of high-quality evaluation that is currently

available within only a small number of heavily instrumented

watershed sites. The point cloud in Fig. 2 is created by

lumping results from all three USDA-ARS watersheds (WG,

LW, and LR) and all five AMSR-E soil moisture products

(AMSRESWI, AMSRENASA, AMSREUSDA, AMSREVU, and

AMSRECOMB). In addition, results are shown for the use of

both TRMM 3B42 (open symbols) and TRMM 3B40RT (filled

symbols) precipitation products as P sat. Unless otherwise

noted, results are based on implementation of both the anomaly

and RTS smoother modifications described in Section II. For

consistency with the anomaly-based Rvalue calculations, the

Rtruth correlation coefficient is also sampled after seasonal

cycles have been removed from both the remotely sensed and

ground-based soil moisture observations.

The use of TRMM 3B40RT data as P sat leads to a high

correlation between Rtruth and Rvalue (R2 = 0.85), suggest-

ing that Rvalue can accurately mimic the correlation-based

evaluation of soil moisture products without any reliance on

ground-based soil moisture observations (see the filled symbols

in Fig. 2). This result verifies the underlying Rvalue approach

by demonstrating its ability to accurately reproduce validation

results obtained from very dense ground-based soil moisture

networks. As discussed in Section II, the Rvalue results in Fig. 2

are based on a—temporally and spatially constant—choice of

γ = 0.85 for API modeling in (1). However, varying γ between

0.80 and 0.90 led to only very minor changes in the observed

correlation between Rtruth and Rvalue.

Despite the obvious simplicity of the API-based modeling

approach in (1), the majority of the observed scatter in Fig. 2

appears to be an attributable simple random sampling error

and not any underlying incompatibility between Rtruth and

Rvalue. For example, 1σ sampling uncertainty in the estimated

correlation coefficient used for Rvalue is responsible for about

75% of the observed root-mean-square (rms) scatter around the

TRMM 3B40RT least squares regression line in Fig. 2 [34].

Consequently, it appears unlikely that the observed fit in Fig. 2

can be substantially improved via the application of more

complex soil water-balance models. The observed correlations

in Fig. 2 are also degraded by the presence of sampling error

in the daily watershed-scale soil moisture estimates derived

by Jackson et al. [19] from ground-based observations and

used here to calculate Rtruth. However, structural and sam-

pling uncertainties are likely much larger for Rvalue estimates

relative to comparably direct Rtruth calculations. Therefore,

the presence of significant correlation between independently

acquired Rvalue and Rtruth in Fig. 2 strongly implies that the

ground-based observations of Jackson et al. [19] are accurately

representing watershed-scale soil moisture dynamics.

The use of the higher accuracy TRMM 3B42 rainfall product,

instead of TRMM 3B40RT, as P sat leads to a reduction in

calculated Rvalue (compare the filled and open symbols in

Fig. 2). This reduction reflects the relationship noted by Crow

[7], where by higher (lower) accuracy Psat rainfall products

lead to lower (higher) Rvalue magnitudes. Note that Rvalue

is a metric of added value and can therefore be increased

through either of the following ways: 1) the improvement of

soil moisture retrievals or 2) the degradation of competing

soil moisture estimates obtained from water-balance modeling

and remotely sensed rainfall [7]. In Fig. 2, the lower Rvalue

associated with TRMM 3B42 reflects the fact that a better

rainfall product makes it incrementally more difficult for a

soil moisture product to provide added skill. In addition, the

transition to the TRMM 3B42 product reduces the observed R2

correlation between Rtruth and Rvalue from 0.85 to 0.66.

As noted previously, the results in Fig. 2 and Table I are based

on adopting both the anomaly and RTS smoother modifications

discussed in Section II-B and C, respectively. In order to mo-

tivate these modifications, Table I presents summary statistics

(i.e., the R2 between Rtruth and Rvalue and the average Rvalue

calculated across all sites) for analogous results calculated

with and without these modifications. For consistency, Rtruth

benchmark results are obtained for either raw or anomaly soil

moisture times series, depending on whether they are being

compared to raw or anomaly-based Rvalue results. The raw/KF

results in Table I reflect the baseline Rvalue approach applied

in [7] and [8]. Regardless of whether TRMM 3B40RT or

3B42 rainfall is used as P sat, the implementation of each

modification (alone or in combination) improves the perfor-

mance of the Rvalue metric. Note the clear increase in the R2

correlation between Rtruth and Rvalue for the fully modified

(anomaly/RTS) case relative to the original (Raw/KF) approach

used in [7] and [8]. Consequently, modifications to the Rvalue

methodology described in Section II appear to produce a more

reliable evaluation metric.
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TABLE I
OBSERVED CORRELATION BETWEEN Rvalue AND GROUND-BASED

Rtruth (R2) AND AVERAGE Rvalue (Rvalue) IN FIG. 2 BASED ON THE

FOLLOWING: THE RAINFALL PRODUCT USED FOR P
sat (TRMM 3B42

OR 3B40RT), THE CHOICE OF DA METHOD (KF OR RTS SMOOTHER),
AND THE TYPE OF TIME-SERIES VARIABLE EXAMINED

(RAW VALUES OR ANOMALIES OBTAINED BY REMOVING

A CLIMATOLOGICAL SEASONAL CYCLE)

Fig. 3. Based on the anomaly and RTS smoother modifications described in
Section II, the relationship between Rtruth and Rvalue for all AMSR-E soil
moisture products (see Section IV) within the three watershed sites (WG is
blue, LR is red, and LW is green). Results illustrate the single case of using
TRMM 3B40RT rainfall for P

sat and TRMM 3B42 for P
gauge.

VII. GLOBAL RESULTS

All Rvalue watershed verification results in Fig. 2 are based

on using daily rainfall observations obtained from dense rain-

gauge networks to estimate P gauge. Consequently, P gauge ac-

curacies obtainable at these sites are likely unrepresentative of

ground-based rainfall products available at less heavily instru-

mented locations. In order to estimate the impact of a reduction

in P gauge accuracy on Fig. 2, Fig. 3 shows the relationship

between Rvalue and Rtruth for the case of P gauge acquired from

the TRMM 3B42 product. Because it is gauge-corrected only at

a monthly time scale using relative sparse measurements [17],

the TRMM 3B42 product represents a substantial reduction in

the accuracy of P gauge rainfall pentads relative to the daily rain-

gauge-based pentads used for P gauge in Fig. 2.

Reducing the accuracy of P gauge leads to a slightly lower

correlation between the calculated Rvalue and observed Rtruth

(compare the closed symbols in Figs. 2 and 3). Nevertheless,

a significant level of correlation is retained (R2 = 0.78). This

suggests that the Rvalue approach is reliable even when global

rainfall products (and not local rain-gauge observations) are

used for P gauge. The key to a robust Rvalue response is not

precisely the absolute accuracy of the P gauge product but rather

the relative accuracy of the P gauge versus the P sat product. In

areas of the world in which monthly rain-gauge observations

are available for a retrospective correction of satellite-based

retrievals, there appears to be a large-enough difference be-

tween the accuracy of the TRMM 3B40RT and 3B42 products

to calculate a reliable Rtruth. Unfortunately, the results in

Fig. 3 provide a lesser guarantee for extremely data-poor areas

in which even monthly retrospective rain-gauge correction is

difficult and/or impossible to perform. One potential solution

in such areas is to use an expanded 30-day window size (N) to

maximize the filtering of short-term errors in P gauge. However,

in the case of Fig. 3, converting from a 5-day to 30-day window

size actually reduces the observed correlation between Rvalue

and Rtruth from R2 = 0.78 to 0.61 (not shown). This reduction

appears to be in response to the reduced consistency between

the (now monthly) temporal support of Rvalue estimates and

remaining daily basis of Rtruth. As a result, the use of a

five-day aggregation window is retained for all future Rvalue

calculations.

Using TRMM 3B42 for P gauge and TRMM 3B40RT as

P sat, quasi-global (land areas between 50◦ S and 50◦ N)

Rvalue results are calculated for each of the remotely sensed

soil moisture data sets introduced in Section IV. As discussed

earlier, high-Rvalue results indicate that a given soil moisture

product is contributing to an improved representation of soil

moisture anomalies (above and beyond the baseline obtainable

using API modeling forced by TRMM 3B40RT rainfall). Fig. 4

shows variations in the average Rvalue performance of various

products—grouped according to the lowest frequency AMSR-

E TB observation used to create them. Within both CONUS

[Fig. 4(a)] and quasi-global [Fig. 4(b)] domains, implemen-

tation of the new RTS and anomaly-based approach leads to

spatially averaged Rvalue results (indicated by open circles)

that gradually rise as TB frequency falls [Fig. 4(b)]. The

slight suppression of AMSREVU Rvalue results over CONUS

(relative to extrapolated expectations for a C-band product) is

almost certainly due to C-band (6.9-GHz) RFI considerations

that forced Owe et al. [26] to fall back on X-band (10.6-GHz)

TB observations over many parts of the U.S. The rela-

tive performance of A.M.- versus P.M.-based retrievals also

varies from product to product. Over the quasi-global domains

[Fig. 4(a)], daytime P.M. overpasses yield slightly better re-

trievals for the AMSRENASA, AMSREUSDA, and AMSRESWI

products, while nighttime A.M. overpasses are preferable for

the AMSREVU product.

Fig. 4 also shows relative variations in temporally aver-

aged Rvalue associated with different Rvalue methodologies.

Over the CONUS domain [Fig. 4(a)], the transition between

raw and anomaly-based Rvalue calculations (see Section II-B)

Authorized licensed use limited to: Wade Crow. Downloaded on May 24,2010 at 18:28:17 UTC from IEEE Xplore.  Restrictions apply. 



CROW et al.: QUASI-GLOBAL EVALUATION SYSTEM FOR SURFACE SOIL MOISTURE RETRIEVALS 2523

Fig. 4. Over the (a) CONUS domain and (b) all global land areas between
50◦ S and 50◦ N, the spatial average of Rvalue for the AMSRESWI,
AMSRENASA, AMSREUSDA, AMSREVU, and AMSRECOMB products
described in Section IV. Results are horizontally organized according to the
lowest frequency TB observations utilized for each product and given for
cases of implementing (“raw/KF”) neither of the modifications in Section II,
(“anomaly/KF”) only the anomaly modification, and (“anomaly/RTS”) both the
anomaly and RTS smoother modifications.

and the subsequent transition from a Kalman filter to an RTS

smoother implementation (see Section II-C) consistently in-

creases Rvalue for all products except AMSRESWI. At the

quasi-global scale [Fig. 4(b)], a consistently positive impact

is associated with switching to an RTS smoother; however,

the impact of preprocessing data into anomalies is more er-

ratic, with large improvements being noted for some products

(e.g., the AMSREVU P.M. product) and small decreases for

others (e.g., the AMSREUSDA A.M. and P.M. products). This

variable response is tied to the accuracy of each product with

regard to representing seasonal soil moisture dynamics. For

example, the AMSREVU P.M. product has a known prob-

lem capturing wet/dry seasonal trends over areas of Africa

(T. Holmes, personal communication). Difficulties associated

with seasonal cycles can impair the ability of a given prod-

uct to represent fine-scale temporal soil moisture anomalies.

Consequently, implementing the anomaly-based calculation of

Rvalue, in which (potentially artificial) seasonal trends are

explicitly removed, leads to a large increase in calculated

Rvalue. Conversely, because seasonal trends in AMSREUSDA

predictions are relatively more accurate, their removal actu-

ally leads to a small decrease in Rvalue. In addition to these

differences in performance, the appropriateness of raw versus

anomaly-based Rvalue metrics is dependent on the degree to

which capturing seasonal predictions represents an important

source of retrieval skill for specific applications. For many

DA applications, all soil moisture products (regardless of

their accuracy) are preprocessed to explicitly match a land

surface model’s individual soil moisture climatology prior to

being ingested. Consequently, added value in the assimilation

product is derived solely from an improved representation of

anomalies relative to this climatology [9]. In these cases,

anomaly-based Rvalue calculations (open circles in Fig. 4) pro-

vide a more robust representation of the overall retrieval value

by de-emphasizing the accurate representation of a seasonal

cycle.

Complete quasi-global 1◦ imagery is shown in Fig. 5 for

A.M. and P.M. retrievals from all AMSR-E-based soil moisture

products except AMSRECOMB. The first-order patterns seen

in Fig. 5 reflect the global distribution of vegetation biome

types that are amenable to microwave-based soil moisture

remote sensing. High skill with regard to anomaly detection

(red shading) is clearly evident in lightly-vegetated areas of

the western U.S., the Iberian peninsula, the Sahel region

of Africa, central Asia, southern Africa, Australia, and the

Pampas region of South America. Low skill (blue shading) is

identified in the rainforest regions of South America, Africa,

and Indonesia, as well as densely vegetated areas in eastern

North America.

In addition to these broad geographic patterns, a number of

product-to-product differences can be detected. Based only on

high-frequency > 10-GHz TB measurements, the AMSRESWI

algorithm demonstrates little added skill outside of sparsely

vegetated areas. Much better results are obtained for all other

products obtained from lower frequency TB observations. In

particular, the AMSREUSDA and AMSRENASA products use

the same AMSRE TB band (10.6 GHz) but differ in their basis

for estimating vegetation canopy opacity. While the single-

polarization AMSREUSDA product requires ancillary vegeta-

tion information, typically derived from historical visible and

near-IR remote sensing data, to estimate canopy opacity, the

AMSRENASA products estimate opacity directly from dual-

polarization microwave TB observations. Fig. 5 suggests that,

at least for X-band products, the added ancillary data require-

ments of the AMSREUSDA product enhance the large-scale

accuracy of its A.M. retrievals over Australia and western

North America. Likewise, the use of dual-polarized C-band

AMSRE TB appears to provide additional skill to the

AMSREVU A.M. product (relative to both the X-band

AMSREUSDA and AMSRENASA products) in areas of eastern

Africa and along a broad swath of Central Asia. Note that the

lack of a C-band single-polarization product in the analysis

prevents a full examination of dual- versus single-polarization

effects on C-band retrievals. In contrast to the product-to-

product variations seen in the A.M. products, relatively little dif-

ference is observed between the AMSREUSDA, AMSRENASA,

and AMSREVU P.M. products—seemingly suggesting that

intra-algorithm differences are more pronounced for daytime

P.M. retrievals.

Fig. 5 can also be used to examine 1:30 P.M. versus 1:30 A.M.

overpass differences for various products. For instance, the
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Fig. 5. Quasi-global Rvalue results for the AMSRESWI, AMSRENASA, AMSREUSDA, and AMSREVU soil moisture products described in Section IV.
Columns separate retrievals based on 1:30 A.M. and 1:30 P.M. local solar time AMSR-E overpasses.

AMSREVU A.M. product is superior to its P.M. counter-

part over arid areas of western North America, north Africa,

northeast Asia, and central Australia. Both AMSREVU and

AMSREUSDA products retrieve soil moisture based on surface

temperature estimates obtained from 37-GHz AMSR-E TB

observations [19], [26]. These surface temperature estimates

are prone to error for daytime conditions in arid climates

and are likely a significant source of uncertainty in retrievals

based on 1:30 P.M. overpasses. Somewhat surprisingly given

their similar approach to surface temperature estimation, an

analogous A.M./P.M. contrast is not seen for the AMSREUSDA

results in Fig. 5. Some care should be taken in interpreting A.M.

Authorized licensed use limited to: Wade Crow. Downloaded on May 24,2010 at 18:28:17 UTC from IEEE Xplore.  Restrictions apply. 



CROW et al.: QUASI-GLOBAL EVALUATION SYSTEM FOR SURFACE SOIL MOISTURE RETRIEVALS 2525

Fig. 6. Outline of GLACE [21] hot spots for (black) precipitation and (green) temperature superimposed on Rvalue results for the 1:30 A.M. AMSREVU product.

versus P.M. overpass differences in Fig. 5 because the temporal

support of A.M. and P.M. Rvalue results may vary. The clearest

example of this is the improved performance of all 1:30 P.M.

soil moisture products (relative to their A.M. counterparts) over

the Tibetan Plateau (see Fig. 5 to the northeast of India). This

difference arises because the AMSREVU and AMSREUSDA

products provide only very sporadic 1:30 A.M. retrievals in the

region, while all four products provide essentially continuous

1:30 P.M. soil moisture estimates. Because the inclusion of a

grid cell on a given day requires the availability of retrievals

from all products (in order to make product-to-product compar-

isons as objective as possible), insufficient A.M. data over the

region are available to make robust Rvalue calculations for any

product.

VIII. “HOT-SPOT” COMPARISON

For many weather and climate applications, the value of

accurate soil moisture retrievals varies geographically. Recent

work using an ensemble of climate models has established the

concept of soil moisture “hot spots” where soil moisture infor-

mation is particularly valuable for predicting long-term precip-

itation and temperature variability [21]. The existence of such

discrete areas implies that, for atmospheric predictability appli-

cations, these regions should be disproportionately emphasized

when globally evaluating a given soil moisture product. There-

fore, a fundamental issue for evaluating soil moisture retrievals

is the degree to which areas where remote sensing observations

add value spatially correspond to identified hot-spot regions.

Fig. 6 examines this issue by overlaying contour lines for pre-

cipitation and temperature hot spots predicted by Koster et al.

[21] on quasi-global Rvalue results for the AMSREVU A.M.

product. The delineated areas represent the target hot spots

where enhanced soil moisture information is particularly rele-

vant for temperature and precipitation forecasting applications.

Hot spots generally span transitional regions between humid

and arid climates [21]. This tendency is clearly illustrated in

central/western North America and sub-Saharan Africa. Within

these regions, there is a tendency for the AMSREVU A.M.

product to perform well on the dry side of the climate transition

but less successfully on the corresponding wetter side. Future

remote sensing measures acquired at L-band have the potential

to penetrate further into wetter (and more heavily) vegetated

portions of such climate transects. For all the AMSR-E soil

moisture products, Fig. 7 shows mean Rvalue results for the

following: 1) all global land areas between 50◦ S and 50◦ N;

2) only land areas within a precipitation hot spot; and 3) only

land areas within a temperature hot spot. Rvalue in hot-spot

regions tends to be higher than its global average (see, for

example, the AMSREVU and AMSREUSDA A.M. products).

That is, on a globally averaged basis, land cover conditions

within hot-spot areas are generally more amenable to soil

moisture remote sensing than those outside, and some degree

of fortuitous correspondence exists between regions of greatest

need and acceptable accuracy for satellite-based surface soil

moisture products. However, the Rvalue difference between hot-

spot and non-hot-spot areas is not observed in the AMSRESWI

soil moisture product (Fig. 7). This suggests that new areas of

soil moisture retrieval skill for 10.6-GHz retrievals (relative to

those already observed at 18.7 GHz) tend to be disproportion-

ately located in hot-spot regions. The prospect of preferentially

adding retrieval skill within hot-spot regions remains a key

motivator for future soil moisture satellite missions based on

even lower frequency TB retrievals [13], [20].
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Fig. 7. Spatial average of Rvalue for the AMSRESWI, AMSRENASA,
AMSREUSDA, AMSREVU, and AMSRECOMB products for all (circles) land
areas between 50◦ S and 50◦ N, (squares) land areas within precipitation hot
spots, and (crosses) land areas within temperature hot spots.

IX. SUMMARY

To date, designers of soil moisture remote sensing algorithms

have generally lacked the ability to evaluate their products at

regional and continental scales. Recent research described in

[7], [8], and [22] attempts to develop a DA-based approach that

spatially expands the geographic extent of regions in which

remotely sensed soil moisture products can be evaluated. In

this paper, we do the following: 1) Fundamentally modify

the existing Rvalue approach (Section II); 2) present the first

independent verification of its ability to accurately reproduce

validation results obtained over highly instrumented watershed

sites; and 3) complete a global-scale application of the newly

modified and verified approach.

Watershed verification results demonstrate that the Rvalue

metric can effectively mimic correlation-based validation re-

sults obtained from dense ground-based soil moisture networks

(Fig. 2). In particular, implementation of the methodological

modifications introduced in Section II leads to larger Rvalue

magnitudes and a stronger correlation with ground-based val-

idation metrics relative to implementation of the baseline

approach in [7] and [8] (Table I). This skill in replicating

ground-based validation results remains even after input data

access is restricted to only satellite-based rainfall data sets

(Fig. 3)—suggesting that the Rvalue approach can be effectively

applied at global scales. The subsequent application over a

quasi-global (50◦ S–50◦ N) domain using TMPA precipitation

data verifies the expected large-scale tendency for soil moisture

retrieval skill to increase as TB frequency decreases (Fig. 4),

and it clarifies the global extent of regions in which remote

sensing contributes to the detection of soil moisture anomalies

(Fig. 5). The spatial correspondence of these areas with regions

of strong land–atmosphere coupling is a critical issue for ar-

ticulating the value of remotely sensed soil moisture retrievals

for atmospheric predictability applications. The results here

quantify the degree of overlap between the hot-spot regions

identified by Koster et al. [21] and those of strong skill for

remotely sensed soil moisture products (Figs. 6 and 7).

Despite these results, it is important to note that the Rvalue

approach is intended to supplement, and not replace, more

traditional satellite soil moisture validation activities based on

ground-based soil moisture networks. As noted in [7], the

Rvalue metric is blind to bias and/or dynamic range errors

and provides only a measure of skill with regard to change

detection. While such change-detection skill is frequently cited

as the key contribution of remotely sensed soil moisture for

many DA activities (see, for example, [9] and [28]), it is not

the only metric by which soil moisture products should be

validated. In particular, bias and rms error (rmse) calculations

must be made versus ground-based observations or through the

implementation of an alternative technique designed to recover

rmse-type information. A very promising example of such a

technique is described by Scipal et al. [32]. In addition, the

Rvalue metric is most properly interpreted as a measure of

added skill, which is sensitive to both the inherent accuracy

of a soil moisture product and the accuracy of the rainfall esti-

mates driving a competing water-balance-based estimate of soil

moisture (Fig. 2). Such relativity is, of course, a limitation for

strict validation activities attempting to establish the absolute

accuracy of a given soil moisture product. However, evaluation

approaches based on measuring the added value of remotely

sensed observations relative to some baseline are important for

assessing the higher level value associated with a soil moisture

product when assimilated into an existing predictive modeling

and/or decision support system.

Follow-on plans for this paper include the application of

the technique to L-band soil moisture retrievals obtained from

the European Space Agency Soil Moisture and Ocean Salinity

mission [20] and integrating the approach into validation

plans for the upcoming NASA Soil Moisture Active/Passive

mission.
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