
Improving Satellite-Based Rainfall Accumulation Estimates Using Spaceborne Surface
Soil Moisture Retrievals

WADE T. CROW

USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

GEORGE J. HUFFMAN

SSAI, NASA GSFC, Laboratory for Atmospheres, Greenbelt, Maryland

RAJAT BINDLISH

SSAI, USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

THOMAS J. JACKSON

USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland

(Manuscript received 31 October 2007, in final form 17 June 2008)

ABSTRACT

Over land, remotely sensed surface soil moisture and rainfall accumulation retrievals contain comple-

mentary information that can be exploited for the mutual benefit of both product types. Here, a Kalman

filtering–based tool is developed that utilizes a time series of spaceborne surface soil moisture retrievals to

enhance short-term (2- to 10-day) satellite-based rainfall accumulation products. Using ground rain gauge

data as a validation source, and a soil moisture product derived from the Advanced Microwave Scanning

Radiometer aboard the NASA Aqua satellite, the approach is evaluated over the contiguous United States.

Results demonstrate that, for areas of low to moderate vegetation cover density, the procedure is capable

of improving short-term rainfall accumulation estimates extracted from a variety of satellite-based rainfall

products. The approach is especially effective for correcting rainfall accumulation estimates derived without the

aid of ground-based rain gauge observations. Special emphasis is placed on demonstrating that the approach can

be applied in continental areas lacking ground-based observations and/or long-term satellite data records.

1. Introduction

For the majority of global land areas, satellite-based

rainfall estimates offer the only possible source of near-

real-time precipitation accumulation information for

operational hydrologic applications. However, provid-

ing such information at required accuracy levels has

proven difficult (Hossain et al. 2004; Hossain and

Anagnostou 2004). The expected (next decade) deploy-

ment of the Global Precipitation Mission (GPM) satel-

lite constellation represents a critical advance in these

efforts (Hou 2006). In addition to GPM, a currently

underexplored possibility for improving land rainfall

retrieval lies in the development of efficient techniques

for leveraging complementary spaceborne water cycle

observations (McCabe et al. 2008). A promising class of

such techniques for rainfall correction is based on in-

terpreting variations in soil water storage realized upon

the assimilation of satellite-based surface soil moisture

retrievals into a water balance model (Pan and Wood

2007. Despite the limited heritage of soil moisture re-

mote sensing methods and products relative to their

rainfall equivalents, surface soil moisture retrievals,

unlike instantaneous rainfall rate measurements, reflect

memory of antecedent rainfall amounts and can there-

fore be sampled at relatively low temporal frequencies

(e.g., once every 1–3 days) and still provide useful

rainfall accumulation information (Crow 2003).
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Recently, Crow (2007) demonstrated that space-

borne estimates of surface soil moisture can be pro-

cessed (via their Kalman filter–based assimilation into a

water balance model) to reveal valuable information

concerning the sign and magnitude of antecedent rain-

fall accumulation errors. The approach is based on the

assimilation of remotely sensed surface soil moisture

retrievals into a simple soil water balance model using

a Kalman filter. The model is assumed to be forced

primarily by a satellite-based rainfall product. Net ad-

ditions or subtractions of soil water suggested by the

filter upon assimilation of a soil moisture retrieval

(commonly referred to as ‘‘analysis increments’’) con-

tain useful information about recent rainfall errors.

That is, the underestimation (or overestimation) of an-

tecedent rainfall accumulations by a satellite-based

rainfall product should result in the subsequent addi-

tion (or removal) of water by the filter upon assimilation

of a post-event surface soil moisture retrieval. Cor-

relation between rainfall errors and subsequent filter

analysis increments implies that analysis increments re-

alized during soil moisture data assimilation are ad-

equately compensating water balance predictions for

the impact of antecedent precipitation errors. Based on

this reasoning, Crow and Zhan (2007) use the magni-

tude of the correlation between rainfall error and

analysis increment correlations as a metric to evaluate

the continental-scale performance of various remotely

sensed surface soil moisture products.

A separate possibility examined here is that the pres-

ence of such a correlation can also be exploited to dy-

namically filter errors existing in satellite-based rainfall

accumulation estimates. That is, analysis increments

could be combined with satellite-based rainfall re-

trievals in such a way that error in rainfall accumulation

estimates is minimized. The successful application of

variance-minimizing data assimilation techniques to this

problem would ensure that the soil moisture–based cor-

rection of a rainfall time series would never increase the

root-mean-square (RMS) error of rainfall estimates—

even in areas where soil moisture retrievals are of poor

quality. While past work (see, e.g., Crow and Bolten

2007) has demonstrated the potential for passively val-

idating satellite-based rainfall products using soil

moisture observations, the active correction of rainfall

products with remotely sensed soil moisture retrievals

has not yet been attempted.

Here, we present an approach for correcting short-

term (2- to 10-day) satellite-based rainfall accumulation

products over land using analysis increments calculated

during the sequential assimilation of a remotely sensed

soil moisture product into a simple water balance

model. Surface soil moisture products are based on the

application of the Jackson (1993) single-channel re-

trieval algorithm to H-polarized 10.6-GHz (X band)

brightness temperature (TB) observations acquired

from the Advanced Microwave Scanning Radiometer

(AMSR-E) aboard the National Aeronautics and Space

Administration’s (NASA) Aqua satellite (Jackson et al.

2007). The correction scheme is applied to a number of

satellite-based precipitation products, including rainfall

accumulation products generated by the Tropical Rain-

fall Measuring Mission (TRMM) Precipitation Analysis

(TMPA). As an initial validation exercise, the proce-

dure is evaluated over the contiguous United States

(CONUS) based on comparisons with the National

Centers for Environmental Prediction/Climate Predic-

tion Center’s (NCEP/CPC) unified rain gauge dataset

(Higgins et al. 2000). However, the ultimate value of

the approach is likely to be the greatest for continental

areas possessing relatively limited ground-based ob-

serving capabilities. As required by such areas, the pro-

cedure is designed to operate solely on satellite-based

data.

2. Kalman filtering

Our approach is based on using a satellite-based rain-

fall product (P9) to drive a spatially distributed, daily

antecedent precipitation index (API) model:

APIi; j 5 giAPIi�1; j 1 P9i; j; ð1Þ

where i and j are time and space indices (respectively)

and g in (1) is varied according to the day of the year

(d) as

gi 5 a 1 b cosð2pdi=365Þ: ð2Þ

Following Crow and Zhan (2007), a and b are held

constant (in both space and time) at 0.85 and 0.10. In

(1), P9 represents the accumulation depth of rainfall on

day i and, consequently, API is expressed in dimensions

of water depth.

Remotely sensed surface soil moisture estimates ui,j

are used to update (1) via a Kalman filter:

API1
i; j 5 API�i; j 1 Ki; jðui; j �API�i; jÞ: ð3Þ

Here, the superscript minus (2) and plus (1) signs de-

note API values before and after Kalman filter updat-

ing. Following Reichle and Koster (2005), daily ui,j es-

timates (in water depth dimensions) for a particular

pixel are obtained by linearly rescaling a time series of

raw surface soil moisture retrievals u8 (in volumetric

soil moisture dimensions) such that retrievals long-term

mean (m) and standard deviation (s) match those
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derived from a multiyear integration of API calculated

for the same pixel:

ui; j 5 ðui; j8� mu
j Þ

sAPI
j

su
j

1 mAPI
j : ð4Þ

Implicit in this transformation is an assumption that

API estimates and the satellite soil moisture retrievals

posses the same vertical support within the soil column.

While the purely linear API models lacks an explicit

representation of a soil layer depth, its inherent

memory of past rainfall (and therefore its storage ca-

pacity) is implied via g. The sensitivity of subsequent

results to our particular parameterization of g in (2) is

examined in section 5e. Also, note that API mean and

standard deviation statistics for (4) are sampled from a

time series generated using (1) and no Kalman filter

updating. The required length of the data heritage re-

quired to obtain stable estimates of these statistics is

examined in section 5f.

The Kalman gain K in (3) is given by

Ki; j 5 T�i; j=ðT�i; j 1 SjÞ; ð5Þ

where T is the error variance for API forecasts and S is

the error variance for u retrievals. At measurement

times, T is updated via

T1
i; j 5 ð1�Ki; jÞT�i; j: ð6Þ

Between soil moisture retrievals, and the adjustment of

API and T via (3) and (6), API is forecasted in time

using observed P9 and (1). In parallel, forecast error T

is updated using

T�i; j 5 g2
i T1

i�1; j 1 Qj; ð7Þ

where Q relates the forecast uncertainty added to an

API estimate between time i 2 1 and i.

The goal of the Kalman update in (3) is optimally

updating API estimates given the availability of (poten-

tially noisy) satellite soil moisture retrievals. For ex-

ample, note how greater uncertainty in these retrievals

(i.e., larger S) leads to smaller K and a reduction in the

weighting applied to observations by (3). A critical as-

pect then is the estimation of the error parameter S in

(5) (describing the soil moisture retrieval error) and Q

in (7) (determining the model uncertainty in API fore-

casts). Here, S and Q are assumed to constant, scalar

quantities that are calibrated on a pixel-by-pixel basis

until a time series of filtering innovations,

ni; j 5 ðui; j �API�i; jÞ=ðT�i; j 1 SjÞ0:5; ð8Þ

is obtained that is temporally uncorrelated and has a

variance of one. In particular, the lack of temporal cor-

relation in n ensures that the filter is accurately parti-

tioning total error between the observations and

modeling sources (Gelb 1974). Note that such calibra-

tion requires no outside information other than time

series variables already used in the filtering procedure

(e.g., u8 and P9). Despite the potential for non-Gaussian

rainfall errors, such an approach has been successfully

applied to estimating modeling errors in a similar soil

moisture data assimilation system (Crow and Bolten

2007).

3. Rainfall correction

Of particular importance for this analysis are updates

to API dictated by (3):

di; j 5 API1
i; j �API�i; j 5 Kiðui; j �API�i; jÞ: ð9Þ

If u retrievals are minimally skilled and the Kalman

filter properly parameterized, d values obtained from

(9) should correlate with antecedent errors in P9 values

used to force (1). In regions where ground-based rain

gauge observations are dense enough to be considered a

validation data product P, the error in P9 can be ex-

plicitly calculated as P9 2 P. To examine the relation-

ship between d and P9 2 P, Crow (2007) temporally

aggregated both quantities within a series of nonover-

lapping windows of length m:

½d�k; j 5
Xi5½ðk11Þm�1n

i5ðkmÞ1n

di; j and ð10Þ

½P9� P�k; j 5
Xi 5ðk11Þm

i5km

ðP9i; j � Pi; jÞ; ð11Þ

and calculated the long-term correlation coefficient be-

tween [d] and [P9 2 P]. The new index k 5 0, 1, 2, . . . ,

counts nonoverlapping m-day time periods, and a lag of

n days is introduced in (10) to account for the causal

relationship between past rainfall and current soil mois-

ture.

Using m 5 7, n 5 1, and an AMSR-E soil moisture

product, Crow and Zhan (2007) found a statistically

significant correlation between [d] and [P9 2 P] (at

95% confidence) for 84% of the CONUS land surface.

This result suggests that [P9 2 P] rainfall accumulation

errors can be estimated, and systematically reduced,

based on [d] values realized during the sequential as-

similation of remotely sensed surface soil moisture into

(1). However, because [d] reflects the correction of all

error sources in API predictions (e.g., the poor param-

eterization of soil water loss) and not just those associ-

ated with rainfall, the linear relationship between d and

[P9 2 P] is not generally one to one. In response, we
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propose to correct m-day remotely sensed rainfall ac-

cumulations ([P9]) using an additive correction of the

form

½fP9�k; j 5 ½P9�k; j 1 lj½d�k; j; ð12Þ

where l is a time constant scaling factor. While consis-

tent with the application of a Kalman filter, it is possible

that an additive (as opposed to multiplicative) error

model for precipitation accumulations has shortcomings

at the space–time scales under study (18 latitude–lon-

gitude, 2–10 days), so results obtained from (12) will be

scrutinized for evidence concerning the appropriateness

of this assumption. One immediate consequence of an

additive correction is that (12) can yield negative ½eP9�
values. Here, all such estimates are replaced with zeros.

In addition, correction via (12) is attempted only for m-

day periods containing more than m/2 distinct soil

moisture retrievals.

The eventual accuracy of the corrected rainfall prod-

uct ½eP9� in (12) is also dependent on deriving a feasible

estimation strategy for individually estimating the time-

constant scaling factor l for each pixel in which rainfall

is corrected. Unfortunately, the optimal choice for l

demonstrates a theoretical dependence on a number of

unknown factors. As noted above, the magnitude of l is

sensitive to the relative partitioning of the total model-

ing error in (1) between external rainfall forcing and

shortcomings in the internal model structure. For in-

stance, if error in (1) is dominated by the poor treat-

ment of soil water loss, as opposed to error in P9, analy-

sis increments will mostly reflect corrections due to

highly inaccurate soil loss predictions and overestimate

the volume of water required to compensate for (more

modest) rainfall errors. This, in turn, implies that l val-

ues less than one are required in (12) to obtain opti-

mally accurate ½eP9� estimates. Conversely, where rain-

fall uncertainty is a relatively greater source of the

overall model error, optimal values for l will be higher

as updates to API made via (3) strongly reflect the im-

pact of rainfall uncertainty.

A further complication in applying (1) is the role of

surface runoff and quick drainage of the near-surface

(1–3 cm) soil moisture layer after the end of rainfall

events, but prior to the subsequent acquisition of a sur-

face soil moisture retrieval. Both processes reduce the

volume of the rainfall error that manifests itself in the

satellite-estimated surface soil moisture anomaly. Con-

sequently, their impact necessitates an increase in the

value of optimized l to compensate for the undetected

rainfall volume that either runs off or infiltrates beyond

the shallow microwave sensor measurement depth.

These factors suggest that the estimation of l will

pose a significant obstacle for the operational imple-

mentation of (12). Here, we pursue and evaluate two

potential strategies for dealing with this issue. The first

is a naı̈ve ‘‘default’’ strategy of simply assigning l to a

fixed value of either 0.5 or 1 for all grid cells at all times.

The second option is a nonparametric ‘‘estimated l’’

strategy of utilizing a second, independently acquired

satellite rainfall dataset (P0) and tuning time-constant

values of l on a pixel-by-pixel basis until the RMS dif-

ference between ½eP9� and [P0] is minimized. If errors in

P9 and P0 are independent, l values that minimize the

mean-squared average of ½eP9� P0� will also minimize

the actual RMS error in ½eP9� (calculated here relative to

the benchmark CPC dataset). This estimated l ap-

proach can be evaluated based upon comparisons with

an ‘‘optimized l’’ strategy in which time-constant l val-

ues are explicitly tuned (on a pixel-by-pixel basis) to

minimize the RMS difference between ½eP9� and the

gauge-based CPC accumulation product ([P]). This fi-

nal approach is, of course, not feasible in a global set-

ting as it requires long-term access to P values acquired

from dense, ground-based rain gauge networks.

In summary, it is important to stress that not all dif-

ferences between API predictions in (1) and rescaled

AMSR-E soil moisture retrievals obtained from (4) can

be attributed to the impact of errors in P on API pre-

dictions. As discussed above, a portion of such dif-

ferences arises from both AMSR-E soil moisture re-

trievals errors and nonrainfall sources of error in API

predictions. Within this context, our entire methodol-

ogy can be viewed as a two-step filtering procedure

designed to isolate these non-rainfall-based error

sources before they can be misattributed to rainfall.

The first step in this filtering process is the application

of a Kalman filter in (9) to estimate API analysis in-

crements d. Here, the total difference between rescaled

AMSR-E retrievals (u) and background API forecasts

(API2) is reduced by a fractional Kalman gain (K , 1)

calculated in (5) based on consideration of the relative

magnitude of soil moisture retrievals and API errors.

As such, it quantifies the fraction of the difference be-

tween u and API– attributable to modeling, as opposed

to AMSR-E retrieval, error. Subsequently, we apply a

secondary correction via a temporally constant l pa-

rameter in (13) to extract, from a temporal aggregation

of d ([d]), the fraction of the total modeling error di-

rectly attributable to rainfall and discard the comple-

mentary portion due to nonrainfall sources of error in

API forecasts. Both of these two filtering steps are

critical before resulting water depths can be correc-

tively applied to a satellite-based rainfall accumulation

estimate.
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4. Data and approach

Remotely sensed surface (1–3 cm) soil moisture re-

trievals u8 are obtained from application of the single-

polarization Jackson (1993) algorithm to X-band

AMSR-E TB data (Jackson et al. 2007). Climatological

normalized difference vegetation index (NDVI) com-

posite products derived from the Advanced Very High

Resolution Radiometer (AVHRR) and the vegetation

water content (VWC)–NDVI regression relationship of

Jackson et al. (1999) are used to estimate VWC. Sur-

face soil moisture retrievals are acquired with a spatial

resolution of about 402 km2 and a measurement fre-

quency of 1–2 days at midlatitudes. Screening is per-

formed to mask areas with snow cover and/or experi-

encing active rainfall. After screening, retrievals ob-

tained from both ascending and descending overpasses

between 1 July 2002 and 31 December 2006 are com-

bined and aggregated to form a (near) daily, 18 lati-

tude–longitude product. Prior to their assimilation into

(1), u8 retrievals are linearly rescaled (on a pixel-by-

pixel basis) using (4) to form a new product (u) with the

same temporal mean and standard deviation as API

products derived from (1).

During this same 2002–06 time period, a number of

different remotely sensed rainfall datasets are used to

estimate the daily rainfall accumulation P9 in (1).

TMPA results are computed retrospectively as the ver-

sion 6 3B42 product. This approach combines multiple

passive microwave estimates, microwave-calibrated in-

frared (IR) estimates, and monthly gauge data (Huff-

man et al. 2007). The real-time, combined passive mi-

crowave portion of the TMPA is computed experimen-

tally as the 3B40RT product (Huffman et al. 2007). It

differs from the version 6 3B42 product in only using

microwave data, being run in real time, and having a

heterogeneous computational record. In particular, the

inventory of microwave data approximately doubled in

February 2005. The Precipitation Estimation from Re-

motely Sensed Information using Artificial Neural Net-

works (PERSIANN) employs a neural network to cali-

brate IR estimates with passive microwave data (So-

rooshian et al. 2000). Finally, the Hydroestimator (HE)

product is based on radar-calibrated IR estimates and

uses numerical weather model data to adjust for mois-

ture availability, the height of the convective equilib-

rium level, and orographic influences (Scofield and Ku-

ligowski 2003). Use of the HE product is delayed until

after July 2003 due to temporal gaps in its coverage.

Benchmark rainfall magnitudes, P, for 2002–05 are ob-

tained from the CPC’s retrospective rain gauge analysis

product within the contiguous United States (Higgins et

al. 2000). For 2006 only, P is based on the real-time

CPC product, which is derived from slightly fewer rain

gauges (information online at http://www.cpc.noaa.gov/

products/precip/realtime/index.shtml). Although indi-

vidual rain gauges provide sampling that is quite differ-

ent from that of satellite-based rainfall estimates, it is

conventional to use interpolated analyses of sufficiently

dense gauge networks as validation for satellite esti-

mates (e.g., Ebert et al. 2007).

All rainfall accumulation products (TRMM 3B42,

TRMM 3B40RT, PERSIANN, HE, and NCEP CPC)

are resampled to a daily, 18 latitude–longitude grid

overlying the CONUS area. For these products, we de-

fine daily accumulation as the total depth of rainfall

occurring between 1200 and 1200 UTC. However, for

the soil moisture product the same day is defined by a

period shifted 12 h into the future (0000–2400 UTC).

Here, this 12-h shift is assumed to effectively capture

the necessary delay between rainfall and the resulting

soil moisture, and n in (10) is set to zero. Results will

focus primarily on a choice of 3 days (i.e., m 5 3) for the

time scale of corrected accumulation products. The spa-

tial domain of interest is the entire CONUS land area

with a special focus on a lightly vegetated southern

Great Plains (SGP) subdomain between 338–408N and

1008–1058W that is generally considered to be well

suited for soil moisture remote sensing (Jackson et al.

1999). Future lower-frequency (1.4 GHz) satellite sen-

sors (Kerr et al. 2001) should yield higher-accuracy soil

moisture products over moderately to heavily veg-

etated surfaces. Consequently, AMSR-E SGP results,

derived using higher-frequency X-band retrievals over

a lightly vegetated area, are likely representative of fu-

ture 1.4-GHz L-band spaceborne results for a geo-

graphic domain extending beyond the SGP to more

densely vegetated regions.

5. Results

For the single lightly vegetated 18 box centered at

358N and 1008W, Fig. 1 plots time series of (a) daily

API values derived from (1) using the TRMM 3B40RT

rainfall product for P9, (b) the raw AMSR-E surface

soil moisture product (u8), and (c) the analysis incre-

ments (d) realized when assimilating rescaled u8 into

(1). For the same grid box over a shorter time period

during summer 2004, Fig. 2 shows the impact of using

(12) and the d time series in Fig. 1c to correct 3-day

TRMM 3B40RT accumulation products. Periods of

time when the TRMM 3B40RT product overestimates

(or underestimates) benchmark CPC accumulation

products are labeled. Note that, for each instance, the

corrected products obtained from (12) are able to re-

vise the TRMM product in the correct direction (i.e.,
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remove accumulated rainfall in overestimated cases

and add rainfall volume in underestimated cases). The

source of this skill is the time series of d values (Fig. 1c)

derived from u8 (Fig. 1b) using (4) and (9).

a. Estimation of l

Figure 2 plots both optimized and estimated l rain-

fall correction results. As discussed in section 3, opti-

mized results are based on tuning a temporally constant

l factor on a pixel-by-pixel basis to minimize the RMS

difference between corrected 3-day accumulation prod-

ucts ½eP9� and 3-day benchmark CPC rainfall accumula-

tions [P]. Such explicit tuning, however, is not possible

for the application of (12) outside of limited areas with

extensive ground-based observations. A globally fea-

sible alternative is to calibrate l in (12) to minimize the

RMS difference between ½eP9� and a second, indepen-

dently acquired, satellite rainfall product ½fP0� (in this

case, the HE product). For the single 18 box examined

in Fig. 2, relatively little difference is observed between

the two approaches. Over the entire CONUS area, Fig.

3 explicitly tests the accuracy of this alternative ap-

proach by plotting time-constant estimated l values—

obtained by minimizing the RMS difference between

FIG. 1. For the 18 box centered at 358N and 1008W, time series of (a) API forced by the

TRMM 3B40RT product, (b) raw AMSR-E soil moisture retrievals (u8), and (c) analysis

increments (d) realized when assimilating rescaled u8 into (1) using (4) and (9).
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the corrected 3-day TRMM 3B40RT rainfall product

ð½eP9�Þ and a 3-day HE rainfall product ð½P0�Þ—against

optimized l results, which explicitly minimize the RMS

difference between ½eP9� and [P]. Unless otherwise

noted, all estimated l values are based on HE data

acquired between July 2003 and December 2006.

Values of optimized l plotted on the ordinate in Fig.

3 typically fall between zero and one. The relative lack

of optimized l values greater than one suggests that,

while [d] and [P9 2 P] tend to be positively correlated,

the entire volume of [d] should not necessarily be at-

tributed directly to rainfall error. More importantly, the

relatively strong (R2 5 0.56) correlation in Fig. 3 im-

plies that optimized time-constant l values can be ef-

fectively estimated without the aid of extensive ground-

based rainfall observations. However, Fig. 3 also dem-

onstrates a tendency for estimated l values to slightly

underpredict their optimized counterparts. One conse-

quence of this bias is that negative estimated l values

are calculated for a small number of 18 pixels (repre-

senting about 5% of the total CONUS area). Since no

physical basis exists for the positive correlation be-

tween [d] and [P9 2 P] (required by a negative value for

l), negative l values are reset to zero. Because of the

form of (12), this prevents the estimated l approach

from modifying rainfall in these pixels.

b. SGP correction of TRMM 3B40RT

For all 18 boxes in the SGP subdomain, Fig. 4 plots

original and corrected 3-day TRMM 3B40RT accumu-

lations against their benchmark CPC equivalents. Spe-

cifically, Fig. 4a plots benchmark CPC 3-day accumu-

lations versus original (uncorrected) TRMM 3B40RT

accumulations. As suggested by earlier results in Fig. 2,

this relationship is enhanced through application of the

optimized l correction procedure (Fig. 4b). Further-

more, an approximately equivalent correction is ob-

tained when utilizing estimated (as opposed to opti-

mized) l values in (12) (Fig. 4c). Relatively small dif-

ferences between Figs. 4b and 4c suggest that the

relationship in Fig. 3 produces sufficiently accurate l

estimates to form the basis of a robust, and operation-

ally feasible, correction procedure.

An alternative, but less encouraging, explanation for

the lack of difference between Figs. 4b and 4c is that

HE daily accumulations (used as the independent rain-

fall data source [P0] to define l) are significantly more

accurate (relative to TRMM 3B40RT) and can there-

fore be substituted for benchmark CPC rainfall esti-

mates with little subsequent impact on l estimates.

However, if this effect was truly responsible for the

small differences seen between Figs. 4b and 4c, then

our estimation approach should yield much poorer re-

sults when the roles of HE and TRMM 3B40RT are

FIG. 2. Time series of original (TRMM 3B40RT), benchmark

(CPC) and corrected 3-day TRMM rainfall accumulations for the

18 box centered at 358N and 1008W. Overestimation (underesti-

mation) labels refer to time periods in which TRMM 3B40RT

rainfall accumulations are greater than (less than) the CPC bench-

mark.

FIG. 3. For 3-day TRMM 3B40RT precipitation accumulations,

comparison between optimized l (derived by minimizing RMS

differences with CPC rainfall) and estimated l (derived by mini-

mizing RMS differences with HE rainfall).

FEBRUARY 2009 C R O W E T A L . 205



reversed (i.e., when TRMM 3B40RT data are used as

[P0] to define l and correct HE accumulations). In fact,

the HE correction results for this reverse case demon-

strate only very small differences between optimized

and estimated l results. Specifically, relative to an R2 of

0.48 for uncorrected HE 3-day accumulations, duplica-

tion of Fig. 4 for this reverse case (not shown) leads to

an R2 of 0.64 for optimized l versus 0.63 for estimated

l. The lack of difference between estimated and opti-

mized results for both the original and reverse cases

implies that the success of our estimation approach is

not contingent on a significant difference in accuracy

between the two satellite-based products (HE and

3B40RT) but rather on the mutual independence of

their errors.

Results in Table 1 summarize the accuracy of our

original and corrected rainfall products (relative to the

CPC benchmark) using a variety of accuracy metrics.

The root-mean-square error (RMSE) and square of the

correlation coefficient (R2) results are based on the

comparison of corrected 3-day accumulation products

with the benchmark CPC product. The false alarm ratio

(FAR) is defined as the fraction of estimated events

that are actually nonevents in the CPC product. The

probability of detection (POD) relates that fraction of

all actual events that are correctly estimated. Here, an

event is defined as a 3-day rainfall accumulation that

exceeds the 95th quantile for all 3-day CPC accumula-

tions intervals in each 18 box. Since our selection of the

95th quantile is essentially arbitrary, results for other

quantile choices are discussed later (section 5e). Table

1 is also broken down according to both geographical

domain (i.e., the entire CONUS area and the smaller

SGP subdomain) and the method utilized for obtaining

l (i.e., the estimated, optimized, and default approaches

introduced in section 3 and discussed above).

Note that the correction procedure improves all five

performance metrics relative to the uncorrected, origi-

nal TRMM 3B40RT product within the SGP subdo-

main (Table 1). As in Fig. 4, relatively small differences

exist between the corrected results obtained via the op-

timized l and estimated l approaches. Both ap-

proaches also slightly outperform the l 5 1 default

case. However, the fixed default choice of l 5 0.5 for all

pixels comes close to matching the results for the esti-

mated l correction. This lack of a significant difference

FIG. 4. For all 18 boxes in the SGP subdomain, scatterplots of 3-day CPC accumulations vs (a) TRMM 3B40RT, (b)

optimized-l-corrected TRMM 3B40RT, and (c) estimated-l-corrected TRMM 3B40RT 3-day accumulations.
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emphasizes that, despite the need to quantify l in a

reasonable way, SGP accuracy improvements demon-

strated in Table 1 are ultimately due to the skill em-

bedded in temporally variable Kalman filter analysis

increments (Fig. 1c) and not the pixel-by-pixel tuning of

a time-constant l factor performed by both the esti-

mated and optimized l strategies. Improvement in all

rainfall accumulation metrics is possible even for the

simplistic treatment of l as a temporally and spatially

fixed variable.

Returning to the additive form for (12) and the oc-

casional negative values of ½eP9� that it allows, recall that

such physically unrealistic values are removed by auto-

matically resetting them to zero (see section 3). For the

SGP domain, removing this postprocessing step and al-

lowing negative ½eP9� values degrades estimated l results

in Table 1, but only modestly (e.g., RMSE increases

from 9.15 to 9.80 mm and R2 decreases from 0.53 to

0.49). In addition, because our approach is based on

rescaling raw u8 retrievals into a potentially biased API

climatology prior to correction, it cannot correct for

long-term accumulation bias. All positive impacts

noted in Table 1 are therefore based on the correction

of random and/or slowly varying accumulation error

components. Correction of the long-term bias in rain-

fall products will require the implementation of other

techniques (e.g., Smith et al. 2006).

c. CONUS correction of TRMM 3B40RT

Results presented up to this point have been based

on the application of our approach to a lightly veg-

etated area (the SGP) known to be well suited to soil

moisture remote sensing (Jackson et al. 1999). Relative

to the SGP subdomain, application of the estimated l

correction procedure to the entire CONUS area yields

substantially smaller relative improvements in all accu-

racy metrics except FAR (Table 1). This reduction

likely reflects the wider range of land surface conditions

outside of the SGP subdomain, some of which are not

well suited to X-band soil moisture remote sensing

(Njoku et al. 2003). As with the SGP region, only small

CONUS-wide differences are noted between corrected

results acquired using optimized and estimated l values

in (12). In contrast, all four accuracy metrics for the l 5

1 default correction case are degraded relative to the

original (uncorrected) TRMM 3B40RT product. The

failure of this naı̈ve approach underscores the impor-

tance of estimating l in an appropriate manner. How-

ever, as in the SGP, relatively good results are obtained

for the better default choice of l 5 0.5 (Table 1).

Figure 5a shows CONUS-wide imagery of the rela-

tive RMSE improvement observed between the origi-

nal and corrected TRMM 3B40RT accumulation prod-

ucts [(RMSEcorrected 2 RMSEoriginal)/RMSEoriginal].

Despite the use of estimated, rather than explicitly op-

timized, l values in (12), relative RMSE improvement

is observed over almost the entire domain, and, within

a large area of the central United States, relative RMSE

reductions greater than 0.30 are found. Increased

RMSE in corrected rainfall is limited to a small number

(;30) of 18 cells in heavily forested areas (e.g., New

England). The mischaracterization of nonrainfall error

sources in our approach would almost certainty lead to

areas of increased rainfall accumulation RMSE. The

relative absence of such degraded areas in Fig. 5a dem-

onstrates that our particular rainfall correction ap-

proach is adequately filtering out the corrupting effect

of soil moisture retrieval uncertainty and nonrainfall

sources of error in API estimates.

While the approach requires the specification of sev-

eral parameters using retrospective data [e.g., the Kal-

man filtering parameters in Q and S in (5) and (7) and

the scaling factor l in (12)], all results in Fig. 5 are

based on the approximation of these parameters using

only remotely sensed data products. At no point during

the correction process is access to the benchmark CPC

rain gauge data required (or assumed) to tune a par-

ticular parameter. In particular, l can be adequately

estimated from satellite-based precipitation products

(Fig. 4). Even a simple default case of l 5 0.5 leads to

substantial correction (Table 1). Consequently, RMSE

correction results displayed in Fig. 5a can be considered

representative of results obtainable in an operational

setting lacking access to ground data.

However, improved RMSE results do not guarantee

the enhancement of other rainfall accuracy metrics.

Figure 5b plots CONUS results for the absolute differ-

ence in the R2ðR2
corrected � R2

originalÞ results calculated

TABLE 1. Spatially averaged RMSE, R2, FAR, and POD statis-

tics for 3-day accumulation estimates derived from both the origi-

nal and corrected versions of the TRMM 3B42RT dataset. The

FAR and POD statistics are based on exceeding the 95th quantile

for 3-day CPC accumulations.

Version Domain

RMSE

(mm)

R2

(2)

FAR

(2)

POD

(2)

Original (l 5 0) SGP 13.02 0.28 0.67 0.49

Estimated l 9.15 0.53 0.60 0.77

Optimized l 8.88 0.57 0.62 0.80

Default (l 5 1) 10.09 0.55 0.67 0.83

Default (l 5 0.5) 9.26 0.52 0.59 0.75

Original (l 5 0) CONUS 11.78 0.30 0.62 0.37

Estimated l 10.07 0.37 0.58 0.41

Optimized l 9.66 0.37 0.57 0.41

Default (l 5 1) 13.07 0.19 0.72 0.32

Default (l 5 0.5) 10.17 0.32 0.57 0.37
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between ½fP9� and [P]. Here, clusters of slightly de-

graded (i.e., reduced) R2 are found in areas of high

vegetation cover (e.g., the Pacific Northwest, the

Ozarks, and along the Appalachian Mountains). Nev-

ertheless, outside of these clusters, areas of more sub-

stantial enhancement can be seen, particularly along a

broad north–south swath of the western United States.

Enhanced POD is also observed throughout relatively

lightly vegetated and nonmountainous areas of the

western United States (Fig. 5c). Figure 5d shows that

while FAR skill is generally enhanced throughout the

entire CONUS domain, the pattern of improvement is

somewhat erratic in that it does not conform to any

known spatial variation in vegetation cover or climato-

logical rainfall characteristics.

d. Correction of TRMM 3B42, HE, and PERSIANN

To this point, all results have been based on the using

the TRMM 3B40RT product for P9 in (1). Table 2 also

summarizes our correction results based on application

of our estimated l correction procedure to three other

rainfall products (TRMM 3B42, HE, and PERSIANN).

Note that the TRMM 3B40RT product is used as the

independent P0 data source during the correction of the

HE and PERSIANN accumulation products. All re-

sults in Table 2 are given in terms of absolute metric

differences (corrected 2 original). Within the SGP sub-

domain, all four products are enhanced with respect to

all four accuracy metrics (i.e., reduced RMSE and FAR

and increased R2 and POD). Corrections made to the

satellite-only TRMM 3B40RT, PERSIANN, and HE

products capture the potential range of improvements

obtainable for satellite-base rainfall estimates acquired

using a variety of algorithms and satellite-based obser-

vations. For instance, slightly smaller corrections made

to the PERSIANN product (relative to TRMM

3B40RT) may be attributable to its incorporation of

more frequent, although less precise, thermal infrared

remote sensing observations not considered in the mi-

crowave-only TRMM 3B40RT product. A larger differ-

ence can be noted between the results for the purely

satellite-derived products and the gauge-corrected

TRMM 3B42 product (Huffman et al. 2007). For all

metrics except FAR, the retrospective gauge-based

FIG. 5. For 3-day TRMM 3B40RT precipitation accumulations, relative [(corrected 2 original)/original] changes in RMSE and

absolute (corrected 2 original) changes in R2, POD, and FAR realized upon implementation of the estimated-l correction procedure.

Blue shading represents an improvement in accuracy and white areas inside the CONUS region denote 18 pixels where application of

the procedure led to no change.
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correction of the TRMM 3B42 appears to limit the

added utility associated with our surface soil moisture–

based correction procedure. This implies that the pri-

mary value of remotely sensed soil moisture for rainfall

correction will be in areas lacking adequate rain gauge

coverage for use in either real-time or retrospective

rainfall analyses. Finally, as in Table 1, enhancements

to the RMSE, R2, and POD skill for all four products

are reduced when expanding the domain of interest

from the lightly vegetated SGP subdomain to the wider

range of land coverage types found within the entire

CONUS region.

e. Parameter sensitivity and correction robustness

Our procedure contains four separate parameters

that could conceivably be modified to impact results:

the choice of a 5 0.85 and b 5 0.10 in (2), the use of a

3-day accumulation window (m 5 3) in (10) and (11),

and the choice of a 95th quantile (of 3-day rainfall ac-

cumulations) as the event threshold for POD and FAR

calculations. The summary below examines the poten-

tial sensitivity associated with these parameters for cor-

rection of the TRMM 3B40RT product within the SGP

subdomain.

Values of a and b used here (0.85 and 0.10) are based

on default values used previously in Crow and Zhan

(2007). Modest sensitivity is observed to variations in

these parameters (not shown). The most significant

trend is a tendency for obtaining slightly better correc-

tion results for lower values of a (e.g., between 0.75 and

0.80). In addition, correction results are degraded for

choices of a greater than 0.90 and b values less than

0.05.

With regard to variations in the length of the accu-

mulation window, Fig. 6 plots the original and corrected

TRMM 3B40RT RMSE and R2 results over the SGP

subdomain as a function of accumulation period length.

The relatively small differences between the results

based on the optimized and estimated l in Fig. 6 un-

derscore the robustness of our estimation procedure for

l over a range of accumulation time scales. In addition,

the relative magnitude of corrections for a 3-day accu-

mulation period (m 5 3) are generally representative of

any accumulation length between 2 and 10 days. How-

ever, the correction skill declines significantly at accu-

mulation time scales finer than the 1- to 2-day retrieval

frequency of the assimilated AMSR-E soil moisture

product. At present, this reduces the effectiveness of

our approach at daily and subdaily time scales.

FAR correction results are also degraded when

specifying lower event thresholds (not shown). In fact,

SGP FAR results for corrected rainfall products slightly

increase (relative to the original, uncorrected TRMM

3B40RT product) when defining an event threshold be-

low the 85th quantile for 3-day CPC accumulations.

Since l is restricted to positive values, the additive form

of (12) implies a positive ½eP9� value for any positive

filter analysis increment [d]. Positive [d] are commonly

associated with underestimated rainfall but can also

TABLE 2. For estimated-l corrections derived from various

precipitation products, spatially averaged absolute change (cor-

rected 2 original) in RMSE, R2, FAR, and POD for 3-day rainfall

accumulation estimates. The FAR and POD statistics are based

on exceeding the 95th quantile for 3-day CPC accumulations.

Product Domain

DRMSE

(mm)

D R2

(2)

DFAR

(2)

DPOD

(2)

TRMM 3B40RT SGP 22.87 0.25 20.06 0.28

HE 20.94 0.16 20.03 0.22

PERSIANN 21.92 0.15 20.07 0.19

TRMM 3B42 20.60 0.07 20.07 0.03

TRMM 3B40RT CONUS 21.71 0.07 20.05 0.05

HE 21.20 0.02 20.03 0.02

PERSIANN 21.07 0.03 20.03 0.02

TRMM 3B42 20.21 0.01 20.02 0.00

FIG. 6. The impact of accumulation period length on R2 and

RMSE (calculated vs the benchmark CPC rain gauge product) for

the original and corrected TRMM 3B40RT accumulation prod-

ucts within the SGP subdomain.
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arise during periods of no precipitation and excessively

rapid dry-down dynamics in API predictions (section

3). Despite our attempts to separate out the effects of

such non-rainfall error sources, it is possible that the

additive form of (12) may erroneously add small accu-

mulation depths to P to compensate for what is, in

reality, a model evaporative or drainage parameteriza-

tion problem. This, in turn, would lead to the false de-

tection of low- to moderate-intensity rainfall events.

Difficulties with FAR correction are also seen in Fig. 2,

where (12) is typically able to only partially correct the

accumulation periods in which the TRMM 3B40RT

product substantially overestimates rainfall accumula-

tions. Consequently, the corrected accumulation time

series remains prone to false alarm errors.

f. Training period requirements

A potential obstacle to the operational implementa-

tion of this approach lies in the need to sample the

long-term mean and variance statistics in order to pa-

rameterize both the scaling relationship described in (4)

and obtain the RMS statistics upon which we base our

estimated l correction procedure (see section 3). Up to

this point, both calculations have been performed as-

suming that data are available for the entire AMSR-E

data period (July 2002–December 2006). In reality, an

operational implementation of this approach using a new

soil moisture or rainfall product would need to acquire

these statistics within a shorter time frame in order to

order to commence real-time product generation.

Within the SGP subdomain, Fig. 7 examines this is-

sue by plotting the R2 performance metric for the esti-

mated l correction procedure as a function of training

period length. Data available within these finite train-

ing periods are sampled to obtain both the rescaling

statistics used in (4) and the RMS error statistics

needed to estimate l. Here, training period length re-

fers to the number of days with good data that are

sampled to obtain such statistics. As in Table 1, results

are based on the correction of TRMM 3B40RT accu-

mulations within the SGP subdomain. However, to

maximize the length of the data time series, the longer

PERSIANN time series data were used for P0 in place

of the HE product. Multiple gray lines in Fig. 7 are

generated by starting finite training periods at various

times along the entire July 2002–December 2006 pe-

riod. These starting points are spaced 100 days apart in

order to sample across the seasonal cycle.

Results in Fig. 7 demonstrate that improved accumu-

lation estimates can generally be obtained after sampling

for as little as 20 days, and results essentially consistent

with the use of the entire period as a training period

(dashed black line in Fig. 7) are possible after a training

period of about 200 days. These results suggest that it

may prove possible to introduce a new data source with

preliminary coefficients after 1 month of training and,

subsequently, to optimize them using about 1 year of data.

6. Conclusions

Remotely sensed rainfall and surface soil moisture

retrievals contain complementary information that can

be exploited to enhance both types of hydrologic ob-

servations. Past work has demonstrated how the root-

mean-square accuracy of daily rainfall accumulations

can be estimated through the assimilation of surface

soil moisture retrievals into an API model (Crow and

Bolten 2007). Here, we expand on this by moving past

the passive evaluation of rainfall products to demon-

strate how remotely sensed soil moisture retrievals can

be used to actively enhance the accuracy of short-term

(2- to 10-day) rainfall estimates derived from satellites.

Because of the availability of high-quality rain gauge

datasets for validation purposes, this initial study is lim-

ited to the well-instrumented CONUS region. How-

ever, the procedure is explicitly designed to require

only satellite-based inputs and can therefore be applied

over continental areas lacking extensive ground instru-

mentation.

Results demonstrate that our additive correction

model (12) can be adequately parameterized using two

FIG. 7. Impact of training period length on R2 correction results

within the SGP subdomain. Multiple lines are generated by choos-

ing various starting points for a training sample used to generate

statistics required for (4) and the estimated-l correction proce-

dure (see section 3).
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quasi-independent remotely sensed rainfall datasets

(Fig. 2). Application of this approach leads to large-

scale improvements in the accuracy of the TRMM

3B40RT rainfall product for a range of rainfall accuracy

metrics (Table 1, Figs. 4 and 5). While qualitatively

similar results are found for other satellite-only prod-

ucts (HE and PERSIANN; Table 2), reduced improve-

ments noted for the TRMM 3B42 product (which in-

corporates a retrospective correction based on ground-

based rain gauge observations) suggest that the highest

utility for the procedure lies in enhancing rainfall mea-

surements in continental regions lacking adequate

ground-based rain radar or rain gauge coverage.

Because of its basis in Kalman filtering, the approach

can be widely applied in regions where soil moisture

retrievals suffer poor accuracy (due to the presence of

dense vegetation) without reducing the RMS accuracy

of the rainfall product (Fig. 5a). However, improve-

ments in other rainfall accuracy metrics (e.g., R2 and

POD) are generally limited to areas of light and mod-

erate vegetation cover (Figs. 5b and 5c). This limitation

is consistent with the performance of current-genera-

tion soil moisture retrievals derived from AMSR-E X-

band (10.7 GHz) TB observations. However, the future

availability of lower-frequency L-band (1.4 GHz) TB

observations from the European Space Agency’s

(ESA’s) Soil Moisture and Ocean Salinity Mission

(SMOS; Kerr et al. 2001) should significantly enhance

results in areas of moderate and dense vegetation.

Relative to X-band AMSR-E retrievals, L-band sensors

will also reduce the impact of atmospheric hydrome-

teors on soil moisture retrievals and should therefore

improve our ability to retrieve soil moisture during and

immediately after storm events.

Despite such generally encouraging results, a close

examination of our approach reveals limitations that

may be attributable to our implicit choice of an additive

error model for rainfall accumulations. In particular,

FAR correction results at low event thresholds appear

to pose a particular challenge (section 5e). Error asso-

ciated with an inappropriate rainfall error model may

also underlie the erratic pattern of FAR correction re-

sults in Fig. 5d. These problems suggest that it may

prove advantageous to reformulate the approach using

an ensemble Kalman or particle filtering approach ca-

pable of better representing the (potentially) multipli-

cative structure of rainfall errors. Additionally, improved

FAR results may also require explicitly considering sat-

uration effects whereby land surface signals become in-

sensitive to additional amounts of antecedent rainfall

once runoff generation occurs. Finally, limitations in the

temporal frequency and spatial resolution of satellite-

based soil moisture retrievals may limit the time–space

scales (i.e., 2–10 day and 18) at which our procedure can

successfully correct rainfall and, consequently, its value

for certain hydrologic applications.

Further research is required to fully address these

issues and clarify the potential benefits of more complex

modeling and data assimilation approaches. In particular,

the constrained ensemble Kalman filtering (CEnKF)

concept proposed by Pan and Wood (2007) provides an

optimal framework for explicitly decomposing the wa-

ter balance analysis increments into their runoff, rain-

fall, evapotranspiration, and soil moisture storage error

components. Consequently, CEnKF forms a natural

framework for the correction of rainfall accumulation

products via soil moisture remote retrievals, and may

enhance the efficiently of our approach when a more

complex land surface model is utilized. It should also be

noted that the basic structure of our correction (in

which near-past rainfall accumulations are modified

using current soil moisture retrievals) is more suggestive

of a smoothing—rather than a filtering—problem. It

may therefore prove beneficial to reformulate the ap-

proach using a fixed-lag smoother to update rainfall

accumulation estimates (Dunne and Entekhabi 2005).

Future work in this direction could further enhance the

encouraging results noted here.
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